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1. Introduction

In this paper we deal with the forced oscillations of a particle, of mass m, con-
strained to a two dimensional sphere S, with radius r, and acted on by the sum
of three forces: a vector field depending only on the position, a possible friction
and a T -periodic forcing term. More precisely, we are concerned with the following
second order differential equation on S:

m ẍ = −
m |ẋ|2

r2
x + h(x) − ηẋ + λϕ(t, x, ẋ) , λ ≥ 0(1)

where h : S → R3 is C1 and tangent to S, η ≥ 0 and ϕ : R×TS → R3 is continuous,
T -periodic in t, and such that ϕ(t, q, v) ∈ TqS for any (t, q, v) ∈ R× TS.

In the case when ϕ does not depend on ẋ, the problem of the existence of T -
periodic solutions of (1), for any value of λ, has been positively solved in [FP2]
and [FP3], and extended to the case of even dimensional spheres in [FP5]. In this
paper, in order to get multiplicity results for forced oscillations of (1), we combine
the methods used in [FP3] and [FP5] with a result of [FS] about the set of harmonic
solutions of periodically perturbed first order autonomous ODE’s.

A physically relevant example is when h is the tangential component of the
gravitational force. In this case we prove that the forced gravitational spherical
pendulum has at least two essentially different T -periodic solutions for λ small
enough. This multiplicity result for small perturbations has a topological nature
and cannot be proved via implicit function theorem. In fact, this is obtained as a
consequence of a general result about multiplicity of harmonic solutions for peri-
odically perturbed autonomous differential equations on a complete manifold (Th.
3.4 below).

2. Preliminaries

Let U be an open subset of a (boundaryless) differentiable manifold M ⊂ Rk,
and v : M → Rk be a continuous tangent vector field such that the set v−1(0) ∩ U
is compact. Then, one can associate to the pair (v, U) an integer, often called the
Euler characteristic (or Hopf index or rotation) of v in U , which, roughly speaking,
counts (algebraically) the number of zeros of v in U (see e.g. [GP], [H], [Mi], [T],
and references therein), and which, for reasons that will become clear in the sequel,
we will call degree of the vector field v and denote by deg(v, U). If v−1(0) ∩ U is a
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finite set, then deg(v, U) is simply the sum of the indices at the zeros of v, i.e.

deg(v, U) =
∑

z∈v−1(0)∩U

i(v, z).

In the general admissible case, i.e. when v−1(0) ∩ U is a compact set, deg(v, U)
is defined by taking a convenient smooth approximation of v having finitely many
zeros (provided that these zeros are sufficiently close to v−1(0) ∩ U). We stress
that no orientability on M is necessary in order to define the degree of a tangent
vector field. Given a compact relatively open subset Z of v−1(0), it is convenient to
introduce the index i(v, Z) of v at Z as i(v, Z) = deg(v, U), where U is any open
neighborhood of Z such that Z = v−1(0) ∩ U .

In the flat case, namely if U is an open subset of Rk, deg(v, U) is just the Brouwer
degree (with respect to zero) of v in U (i.e. in any bounded open set V containing
v−1(0) and such that V̄ ⊂ U).

Using the equivalent definition of degree given in [FP1], one can see that all the
standard properties of the Brouwer degree on open subsets of Euclidean spaces,
such as homotopy invariance, excision, additivity, existence, etc., are still valid in
the more general context of differentiable manifolds.

In what follows, the inner product of two vectors v, w in Rk is denoted by 〈v, w〉,
the vector product (when k = 3) by v × w, and |v| will stand for the Euclidean

norm in Rk (i.e. |v| =
√
〈v, v〉). Moreover, if A : E → E is an endomorphism of

the vector space E, we will denote by σ(A) the spectrum of A.
If M is a differentiable manifold embedded in some Rk, we will denote by C n

T (M),
n ∈ N∪{0}, the metric subspace of the Banach space C n

T (Rk) of all the T -periodic

Cn maps x : R → M with the C n norm given by ‖x‖n =
∑n

i=0 maxt∈R

∣∣x(i)(t)
∣∣ (in

the case n = 0 we will simply write CT (M)). Observe that C n
T (M) is not complete,

unless M is complete (i.e. closed in Rk). Nevertheless, since M is locally compact,
C n

T (M) is always locally complete.

In the sequel we will make use of the following version of Ascoli’s theorem.

Theorem 2.1. Let X be a subset of Rk and B a bounded equicontinuous subset
of C ([a, b] , X). Then B is totally bounded in C ([a, b] , X). In particular, if X is
closed, B is relatively compact.

3. Multiplicity for first order equations

We deal with the following parametrized differential equation

ẋ = g(x) + λf(t, x) , λ ∈ [0, +∞),(2)

where, throughout this section, g : M → Rk and f : R × M → Rk are continuous
tangent vector fields on a boundaryless manifold M ⊂ Rk and f is T -periodic in
the first variable.

We say that (λ, x) ∈ [0,∞) × CT (M) is a T -pair (or solution pair) if x(·) is a
solution of (2) corresponding to λ. If λ = 0 and x is constant, then (λ, x) is said to
be trivial. Clearly one may have nontrivial solutions even when λ = 0.

Denote by X the subset of [0,∞)×CT (M) of all the T -pairs. Known properties
of the set of solutions of differential equations imply that X is closed, hence it is
locally complete as a closed subset of a locally complete space.
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Lemma 3.1. Assume M is a complete manifold. Then any bounded subset of X
is actually totally bounded. As a consequence, closed and bounded sets of T -pairs
are compact.

Proof. Since M is complete, its bounded subsets are relatively compact (in M).
Thus, given A ⊂ X bounded, the set

{(λ, x(t)) ∈ [0,∞) × M : (λ, x) ∈ A, t ∈ [0, T ]}

is contained in a compact set K ⊂ [0,∞)×M . Hence, there exists a constant c ≥ 0
such that |g(y) + λf(t, y)| ≤ c for all t ∈ [0, T ] and all (λ, y) ∈ K. This implies
that |ẋ(t)| ≤ c for all (λ, x) ∈ A. Thus A can be regarded as an equibounded set
of equicontinuous functions from [0, T ] into [0,∞) × M . Ascoli’s Theorem implies
that A is totally bounded.

If A is assumed to be closed in X then, as a closed subset of a complete metric
space, A is complete. Thus, being totally bounded and complete, it is compact. 2

The proof of the above lemma shows that, even when M is not complete, X is
always locally totally bounded. Thus, being locally complete, X is actually locally
compact.

For the sake of simplicity, according to [FP6], we make some conventions. We
will regard every space as its image in the following diagram of natural inclusions

[0,∞) × M −→ [0,∞) × CT (M)
↑ ↑
M −→ CT (M) .

In particular, we will identify M with its image in CT (M) under the embedding
which associates to any p ∈ M the map p̂ ∈ CT (M) constantly equal to p. Moreover
we will regard M as the slice {0} × M ⊂ [0,∞) × M and, analogously, CT (M) as
{0} × CT (M). We point out that the images of the above inclusions are closed.

According to these identifications, if Ω is an open subset of [0,∞)×CT (M), by
Ω ∩ M we mean the open subset of M given by all p ∈ M such that the pair (0, p̂)
belongs to Ω. If U is an open subset of [0,∞)×M , then U ∩M represents the open
set {p ∈ M : (0, p) ∈ U}. With the above conventions, g−1(0) can be viewed as the
set of trivial T -pairs.

In [FS] we proved the following result about the structure of the set X of T -pairs
of (2).

Theorem 3.2. Let f : R × M → Rk and g : M → Rk be continuous tangent
vector fields defined on a (boundaryless) differentiable manifold M ⊂ Rk, with
f T -periodic in the first variable. Let Ω be an open subset of [0,∞) × CT (M),
and assume that deg(g, Ω ∩ M) is well defined and nonzero. Then there exists a
connected set Γ of nontrivial T -pairs of (2) in Ω whose closure in [0,∞)× CT (M)
meets g−1(0) ∩ Ω and is not contained in any compact subset of Ω. In particular,
if M is closed in Rk and Ω = [0,∞) × CT (M), then Γ is unbounded.

We will say that a point p ∈ g−1(0) is T -resonant for (2) if g is C1 in a neigh-
borhood of p and if the linearized problem (on TpM)

{
ẋ = g′(p) x
x(0) = x(T ) ,

which corresponds to λ = 0, admits nontrivial solutions.
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Notice that a point p ∈ g−1(0) is not T -resonant if g′(p) (which maps TpM

into itself, see e.g. [Mi]) has no eigenvalues of the form 2πli
T

with l ∈ Z. Thus, in
particular, p is an isolated zero of g.

In what follows, given a subset Y of M , by Fr(Y ) we denote the boundary of Y
in M .

Lemma 3.3. Let g : M → Rk be a C1 tangent vector field. If p ∈ g−1(0) is not
T -resonant, then for any sufficiently small neighborhood V of p in CT (M) there
exists a real number δV > 0 such that [0, δV ] × Fr(V ) does not contain any T -pair
of (2).

Proof. Since the set X of the T -pairs of (2) is locally compact, there exists an
open neighborhood W of p in CT (M) and a number µ > 0 such that X∩

(
[0, µ] × W

)

is compact. Let us prove first that if W is sufficiently small, then {0} × W does
not contain any T -pair of (2) different from (0, p).

Assume, by contradiction, that there exists a sequence of nontrivial T -pairs of the
form {(0, xn)}n∈N

converging to p (recall that, according to our convention, p can
be seen as an element of [0,∞) × CT (M)). By definition, we have |xn(t) − p| → 0
as n → +∞ uniformly in t (recall that M is embedded in Rk) and, in particular,
limn→+∞ xn(0) = p. Put

pn = xn(0) and un =
pn − p

|pn − p|
.

Without loss of generality we can assume that un → u ∈ TpM . Denote by Pt : M →
M the Poincaré t-translation operator associated with the equation ẋ = g(x). It is
well known, since g is C1, that the map Pt(·) is differentiable. Define Φ : M → Rk

by Φ(ξ) = ξ − PT (ξ). Obviously Φ is differentiable and Φ(pn) = Φ(p) = 0. Thus,

Φ′(p)u = lim
n→∞

Φ(pn) − Φ(p)

|pn − p|
= 0.

On the other hand Φ′(p) : TpM → Rk operates as follows

Φ′(p)v = v − P ′

T (p)v , ∀v ∈ TpM.

It is well known that the map α : t 7→ P ′

t (p)u satisfies the Cauchy problem
{

α̇(t) = g′(p)α(t)
α(0) = u .

Since p is not T -resonant, Φ′(p)u = α(0) − α(T ) 6= 0. A contradiction.
Let us now complete the proof. Take W satisfying the above properties and let

V ⊂ W . Assume by contradiction that there are no numbers δV as in the assertion.
Then, there exists a sequence {(λn, xn)}n∈N

⊂ ([0, µ] × Fr(V )) of T -pairs such that

λn → 0 and xn → x̄ for n → +∞. Thus (0, x̄) ∈ {0}×Fr(V ) ⊂ {0}×W is a T -pair
different from (0, p), contradicting the choice of W . 2

We are now in a position to prove a multiplicity result for first order equations.

Theorem 3.4. Let M ⊂ Rk be a complete differentiable manifold and let g : M →
Rk be a continuous tangent vector field on M with g−1(0) compact. Assume that
at least a zero p of g is not T -resonant and such that deg(g, M) 6= i(p, g). Suppose
that the connected sets of T -periodic solutions of ẋ = g(x) are bounded in CT (M).
Then, given f as in (2), there exists λf > 0 such that, for any λ ∈ [0, λf ], (2) has
at least two T -periodic solutions with different images.
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Proof. Put Y = g−1(0)\{p} and define

ΩY = ([0,∞) × CT (M)) \{p},

Ωp = ([0,∞) × CT (M)) \Y.

Since p is not T -resonant, then deg(g, Ωp ∩ M) = deg(g, M\Y ) = i(p, g) = ±1.
From the additivity property of the degree and the assumption deg(g, M) 6= i(p, g),
it follows deg(g, ΩY ∩ M) = deg(g, M\{p}) 6= 0. Applying Theorem 3.2 to ΩY and
Ωp, we get two connected sets ΓY ⊂ ΩY and Γp ⊂ Ωp of nontrivial T -pairs, whose

closures ΓY and Γp in [0,∞) × CT (M) meet respectively Y and p, and are not
contained in any compact subset of ΩY and Ωp.

Let X be the set of the T -pairs of (2). Denote by B(p, ε) the open ball in CT (M)
centered at p with radius ε, and by S(p, ε) its boundary. By Lemma 3.3, given ε
sufficiently small, there exists λε > 0 such that X ∩ ([0, λε] × S(p, ε)) = ∅. By

Lemma 3.1, Γp is not contained in [0, λε]×B(p, ε). Thus, Γp being connected, one
has Γp ∩ ({λ} × B(p, ε)) 6= ∅ for all λ ∈ [0, λε].

Let GY be the connected component of the set of T -pairs which contains ΓY .
Since GY is a connected component and Γp is connected, either Γp ⊂ GY or Γp ∩
GY = ∅.

Consider first the case when Γp ⊂ GY . By the connectedness of GY and by the
fact that GY ∩ Y 6= ∅, it follows that for any λ ∈ [0, λε] there exists a T -pair in

GY ∩ ({λ} × (CT (M)\B(p, ε))) .

Thus, in this case, for any λ ∈ [0, λε] we get at least two T -periodic solutions, one
in B(p, ε) and one in CT (M)\B(p, ε). In particular these solutions have different
image.

Assume now Γp∩GY = ∅. In this case GY is contained in ΩY and unbounded. In
fact, if GY was bounded, then, by Lemma 3.1 it would be a compact subset of ΩY

containing ΓY , which is impossible. Since GY is unbounded, it cannot be contained
in {0}×CT (M) by assumption. Hence the projection π1(G

Y ) on [0,∞) of GY is a
nontrivial interval, that is, there exists δY > 0 such that [0, δY ] ⊂ π1(G

Y ). Choose
λf = min{δY , λε}. The connectedness of GY implies that for any λ ∈ [0, λf ] there
exists at least a T -pair in {λ} × (CT (M)\B(p, ε)). Otherwise it is easy to see that
GY would be disconnected by a closed set of the form {λ}×(CT (M)\B(p, ε)). Thus,
as before, for any λ ∈ [0, λf ] there is a solution in B(p, ε) and one in CT (M)\B(p, ε).

2

The following example shows that in the above theorem the non-resonance as-
sumption at p cannot be merely replaced by the hypothesis that p is an isolated
zero of g with nonzero index i(p, g) 6= deg(g, M).

Example 3.1. On the plane M = {(q1, q2, q3) ∈ R3 : q3 = 1} ∼= R2 consider
the (tangent) vector fields g(q) = (q2,−q1, 0) and f(t, q) = (0, sin t, 0). Following
a classic procedure due to Poincaré, we associate to them the tangent vector fields
on the unit sphere g̃ : S2 → R3 and f̃ : R × S2 → R3 as follows. Let S2

+ =

{(q1, q2, q3) ∈ S2 : q3 > 0} and S2
−

= {(q1, q2, q3) ∈ S2 : q3 < 0} be the ”upper” and
the ”lower” hemispheres of S2. Define h+ : S2

+ → M as the diffeomorphism which
associates to any q ∈ S2

+ the intersection of M with the straight line through the

origin and q. The map h− : S2
−
→ M is defined analogously. We define g̃ and f̃ on
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S2
+ (S2

−
) as the tangent vector fields which correspond to g and f under h+ (h−).

Straightforward computations show that

g̃(q) = (q2,−q1, 0),

f̃(t, q) = q3 sin t (−q1q2, 1 − q2
2 ,−q2q3).

Thus g̃ and f̃ can be smoothly extended to the whole sphere. Obviously g̃ has only
two zeros, the North and the South poles, both with index one.

The following facts can be easily verified.

1. If λ > 0, any solution of

ż = g̃(z) + λf̃(t, z)(3)

starting either from S2
+ or S2

−
corresponds to a solution of ẋ = g(x) +

λf(t, x) on M . Thus, it cannot be periodic.
2. Any solution of (3) starting from a point of the equator is 2π-periodic.
3. The image of any solution on the equator is the equator itself.

Thus (3) admits ”essentially” only one 2π-periodic solution for any λ > 0.

4. The spherical pendulum

We deal with the problem of the motion of a particle of mass m constrained on
a sphere and subjected to an active force consisting of three parts: a vector field
depending only on the position (e.g. the gravity), a possible friction, and a T -
periodic forcing term. Actually we deal with the second order differential equation
on a sphere S = {q ∈ R3 : |q| = r},

m ẍ = −
m |ẋ|2

r2
x − ηẋ + h (x) + λϕ (t, x, ẋ) ,(4)

where, as throughout the rest of this section, h : S → R3 is a C1 tangent vector field
on the compact 2-dimensional smooth manifold S, η is a non-negative real number
and ϕ : R × TS → R3 is a continuous T -periodic active force on S; that is, a
continuous map such that ϕ(t; q, v) = ϕ(t+T ; q, v) ∈ TqS for any (t; q, v) ∈ R×TS.
Here TS denotes the tangent bundle to the sphere S; i.e. the set

TS =
{
(q, v) ∈ R3 ×R3 : q ∈ S , 〈q, v〉 = 0

}
.

It is convenient to regard S as the null section of the tangent bundle, i.e. as the
set S ×{0} ⊂ R3 ×R3. In this way, given an open subset U of TS, the expression
U ∩ S will denote the open subset of S given by {q ∈ S : (q, 0) ∈ U}. The term

−m (|ẋ(t)| /r)
2
x(t) on the right hand side of (4) is the reactive force due to the

constraint S.

An important special case of equation (4) is when h is the tangential component
of the gravitational force (0, 0,−mg), that is

hg(q) =
mg

r2

(
q3q1 , q3q2 ,−(r2 − q2

3)
)
,

q = (q1, q2, q3). In what follows, when h = hg, the equation (4) and its equivalent
form (9) below is called the forced gravitational pendulum equation.

In order to apply Theorem 3.4 we will show that in C1
T (S) there are no unbounded

connected sets of solutions of mẍ = −
(
m |ẋ|2 /r2

)
x + h(x) − ηẋ. The proof, for

η = 0, is based on [FP3]. We point out that if h is conservative (e.g. when h = hg)
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the case η > 0 is trivial. In this situation, in fact, the only possible T -periodic
solutions are constant.

Lemma 4.1. Let h : S → R3 be a continuous tangent vector field on S. Any
connected set of solutions in C1

T (S) of the second order equation

m ẍ = −
m |ẋ|2

r2
x + h(x) − ηẋ,(5)

where η ≥ 0, is bounded. Moreover, if η > 0, then the set of solutions in C1
T (S) of

(5) is a priori bounded.

Proof. Throughout this proof we let H = max{|h(q)| : q ∈ S}.

Let us consider first the case η > 0. If x : R → S is a T -periodic solution

of (5), then take u(t) = |ẋ(t)|2 and let t0 be a point in [0, T ] such that u(t0) =
maxt∈[0,T ] u(t). Since u is differentiable, one gets

0 = u̇(t0) = 2 〈ẋ(t0), ẍ(t0)〉 =
2

m
〈ẋ(t0), h (x(t0)) − ηẋ(t0)〉 .

Hence,

η |ẋ(t0)|
2

= 〈ẋ(t0), h (x(t0))〉 ≤ |ẋ(t0)|H

In other words, if x : R → S is a T -periodic solution of (5), then ‖x‖1 ≤ r+H/η.
Thus the set of T -periodic solutions of (5) is bounded.

Assume now η = 0. In order to deal with this more delicate case, we need the
notion of admissible curve (on a sphere) and of index of an admissible curve (see
[FP3]). Let y ∈ C1

T (S) be a curve such that ẏ(t) 6= 0 for any t ∈ R. Fix τ ∈ R

and let ατ be the straight line through the origin spanned and oriented by the
vector product y(τ) × ẏ(τ). If, for any τ, t ∈ R, the distance ρτ (t) between y(t)
and ατ is positive, then we say that y is admissible. It is readily verified that the
set of admissible curves is an open subset of C1

T (S). To any admissible curve it is
associated, in a continuous way, an index ind(y) which, roughly speaking, counts
the number of turns the curve makes around any ατ axis associated with y. One
can show that the admissibility of y ensures that this number is independent of
τ ∈ R.

Let now x : R → S be a T -periodic solution of (5) such that ‖x‖1 ≥ 2HT/m+r.
In [FP3] it is proved that x is admissible and that, for any τ ∈ R,

ind(x) ≥
mT |ẋ(τ)| − HT 2

2πmr
.

Thus, since S is bounded, there exist a, b > 0 such that

ind(x) ≥ a ‖x‖1 − b.(6)

Let Σ be a connected set of solutions for (5), which, without loss of generality, we
may assume to be closed. By the Tietze extension theorem there exists a continuous
function ω : Σ → R such that ω(x) = ind(x) if ‖x‖1 ≥ 2HT/m+ r. The inequality
(6) shows that the image of ω is unbounded. Moreover, since Σ is connected, this
image must actually be an unbounded interval. This is impossible, because ω takes
integer values outside the set

Σ1 = {x ∈ Σ : ‖x‖1 ≤ 2HT/m + r} ,

which, by Ascoli’s theorem, is compact. 2
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Since Theorem 3.4 is stated for first order differential equations, it is convenient
to write (4) as an equivalent first order equation on TS (the phase space). Notice
that, while the configuration space S is compact, this is not the case for TS.

Given h and ϕ as in (4), we associate to them the tangent (to TS) vector fields

ĥ : TS → R3 ×R3 and ϕ̂ : R× TS → R3 ×R3, given by

ĥ(q, v) =

(
v ,−

|v|

r2

2

q +
h(q)

m

)
,(7)

ϕ̂(t, q, v) =

(
0 ,

1

m
ϕ(t, q, v)

)
.(8)

The equation (4) is equivalent to the following first order differential equation on
TS:

ξ̇ = ĥ(ξ) − ηκ(ξ) + λϕ̂(t; ξ) , ξ = (q, v),(9)

where ξ = (q, v) and κ(q, v) = (0, v/m). Lemma 4.1 implies that any connected

set of solutions in CT (TS) of the first order equation ξ̇ = ĥ(ξ) − ηκ(ξ) is bounded.
We say that a point p ∈ h−1(0) is T -resonant for the second order equation (4)

if the (linearized) equation mẍ = h′(p)x − ηẋ on TpS admits nontrivial T -periodic
solutions. Obviously p is T -resonant if and only if so is (p, 0) for (9). Standard

computations show that p is not T -resonant for (4) if and only if −m
(

2lπ
T

)2
+η 2lπi

T
/∈

σ (h′(p)) for any l ∈ Z.

Theorem 4.2. Let h : S → R3 be a C1 tangent vector field on S, with a not
T -resonant zero for (4). Then, given a continuous T -periodic active force ϕ :
R × TS → R3 on the sphere S, there exists λϕ > 0 such that, for λ ∈ [0, λϕ], (4)
has at least two T -periodic solutions with different images.

Proof. Let p be a zero of h which is not T -resonant. Since 0 /∈ σ (h′(p)), p is a
nondegenerate zero of h, which implies i(h, p) = ±1. Moreover, by the Poincaré-
Hopf Theorem, 2 = χ(S) = deg(h, S).

We need to relate the degree of h with that of ĥ − ηκ. Define G : TS × [0, 1] →

R3 × R3 by G(ξ, µ) = ĥ(ξ) − µηκ(ξ). Observe that G is an admissible homotopy

between ĥ and ĥ−ηκ in any open neighborhood V of p such that V ∩h−1(0) = {p}.
Hence, by the homotopy property of the degree,

i(ĥ, p) = i(ĥ − ηκ, p).

The same homotopy shows that deg(ĥ, S) = deg(ĥ − ηκ, S). From Lemma 1.3 of

[FP4] it follows that i(ĥ, p) = −i(h, p), and deg(ĥ, S) = − deg(h, S). Thus, finally,

i(ĥ − ηκ, p) = −i(h, p) = ±1

6= −2 = − deg(h, S) = deg(ĥ − ηκ, S).

Lemma 4.1 ensures that the connected sets of T -periodic solutions of (9) are
bounded. Thus, by Theorem 3.4, for λ small enough (9) has at least two T -
periodic solutions with different images. Thus the same assertion holds true for
the equivalent equation (4). 2

In the case when h = hg, Theorem 4.2, has the following physical meaning.
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The T -periodically perturbed gravitational pendulum for small perturba-
tions admits at least two essentially different T -periodic solutions.

More precisely, we have the following

Corollary 4.3. Given a T -periodic active force ϕ : R × TS → R3 on the sphere
S, there exists λϕ > 0 such that, for any λ ∈ [0, λϕ], the perturbed gravitational
pendulum equation

m ẍ = −
m |ẋ|2

r2
x + hg(x) − ηẋ + λϕ(t, x, ẋ),

where η ≥ 0, has (at least) two T -periodic solutions with different images.

Proof. The linearized equation in the north pole n = (0, 0, 1) is ẍ = (mg/r) x−ηẋ,
x ∈ TnS ∼= R2. Thus n is not T -resonant for any T > 0. 2

We point out that when the south pole s = (0, 0, 1) is T -resonant for the grav-
itational pendulum equation, the multiplicity result in Corollary 4.3 cannot be
deduced via the implicit function theorem.
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