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Abstract

These notes are a brief introductory course to second order differential equations
on manifolds and to some problems regarding forced oscillations of motion equa-
tions of constrained mechanical systems. The intention is to give a comprehensive
exposition to the mathematicians, mainly analysts, that are not particularly famil-
iar with the formalism of differential geometry. The material is divided into five
sections. The background needed to understand the subject matter contained in
the first three is mainly advanced calculus and linear algebra. The fourth and the
fifth sections require some knowledge of degree theory and functional analysis.

We begin with a review of some of the most significant results in advanced calcu-
lus, such as the Inverse Function Theorem and the Implicit Function Theorem, and
we proceed with the notions of smooth map and diffeomorphism between arbitrary
subsets of Euclidean spaces. The second section is entirely devoted to differentiable
manifold embedded in Euclidean spaces and tangent bundles. In the third section,
dedicated to differential equations on manifolds, a special attempt has been done to
introduce the notion of second order differential equation in a very natural way, with
a formalism familiar to any analyst. Section four regards the concept of degree of a
tangent vector field on a manifold and the Euler-Poincaré characteristic. Finally, in
the last section, we deal with forced oscillations for constrained mechanical systems
and bifurcation problems. Some recent results and open problems are presented.

1. Notation and preliminaries

We begin this section by briefly reviewing some fundamental notions in calculus of
several variables.

Recall that a real function f defined on an open subset U of R
k is said to be of class

C0 (in U) if it is continuous. Inductively, f is said to be of class Cn, n ≥ 1, if all its first
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partial derivatives are Cn−1. This definition is immediately extended to a vector valued
mapping f : U → R

s by simply requiring that all its component functions, f1, f2,. . . ,
fs, have the same property. Finally, f : U → R

s is of class C∞, or smooth, if it is Cn

for all n ∈ N.

Exercise 1.1. Prove by induction that any Cn map is Cn−1.

Hint. The assertion is true for n = 1, as a consequence of the Mean Value Theorem.

We point out that this definition of a Cn map, which is clearly equivalent to the
classical one, has the advantage that it can be used to give simple inductive proofs of
the well-known fact that (whenever it makes sense) the sum, the product, the quotient,
and the composition of Cn maps is still a Cn map (defined on an appropriate open
domain). The reader is invited to perform the details of these proofs (we suggest to
follow the indicated order).

Clearly the notion of Cα map, α ∈ N ∪ {∞}, does not depend on the norms in the
source and target spaces. This is due to the fact that in a finite dimensional vector
space all the norms are topologically equivalent, and the partial derivative is defined as
a limit, a purely topological concept. Therefore, unless otherwise specified, the norm we
consider in the spaces R

m, m ∈ N, is the standard Euclidean one, indicated by | · |. The
inner product of two vectors u, v ∈ R

m will be denoted by 〈u, v〉; so that |x|2 = 〈x, x〉
for all x ∈ R

m. A Euclidean set is just a subset of any Euclidean space R
m.

Exercise 1.2. Let f : J → R be a smooth function defined on an open real interval.
Assume f ′(x) 6= 0 for all x ∈ J . Prove that the inverse of f , f−1 : f(J) → R, is smooth.

Hint. Use the inductive definition of Cn function and the well-known formula (f−1)′(y) =
1/f ′(f−1(y)).

Let E, F and G be finite dimensional vector spaces. The vector space of linear
operators from E into F will be denoted by L(E,F ), or briefly by L(E) in the case
where F = E. The open subset GL(E) of L(E) stands for the group of non-singular
linear endomorphisms of E (the so-called automorphisms of E). The composition of
two linear operators A : E → F and B : F → G is simply denoted with BA, instead of
B ◦A, as will be done in the nonlinear case (to avoid confusion with the product of real
functions). If the spaces E and F possess standard bases, as in the case when E = R

k

and F = R
s, an element A ∈ L(E,F ) will be identified with its representing matrix. In

this way, the notation BA for the composition of two linear operators is consistent with
the corresponding row-by-column product of two matrices.

A map f : U → R
s, defined on an open subset of R

k, is said to be (Fréchet)
differentiable at p ∈ U if there exists (and in this case is unique) a linear operator
f ′(p) ∈ L(Rk,Rs), called the derivative of f at p, in such a way that the map ε :
(U − p) \ {0} → R

s, defined by the formula

f(p+ h) − f(p) = f ′(p)h+ |h|ε(h),

tends to zero as h → 0. In this case it is convenient to extend the map ε to U − p by
putting ε(0) = 0, so that ε turns out to be continuous at the origin of R

k.
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We recall that if f is C1 on U , then it is also Fréchet differentiable on the same
domain (i.e. differentiable at every p ∈ U). It is a straightforward consequence of the
definition that, if f is differentiable at p, the value that f ′(p) takes on a vector h ∈ R

k

coincides with the directional derivative of f at p along h (and this also shows the
uniqueness of the Fréchet derivative). That is, one has

f ′(p)h = df(p, h) := lim
t→0+

f(p+ th) − f(p)

t
.

A generalized version of this formula (Lemma 1.1 below) will play a crucial role in the
extension of the notion of derivative for maps which are not (necessarily) defined on
open sets.

Since, as pointed out before, L(Rk,Rs) is identified with the space of s × k real
matrices, the symbol f ′(p) stands also for the matrix representing the derivative of f
at p (with respect to the standard bases of R

k and R
s, respectively): the so called

Jacobian matrix of f at p, which, we recall, depends only on the partial derivatives at
p of the component functions of f . With this convention, the well-known chain rule for
differentiable maps reads as in the one-dimensional case. Namely

(g ◦ f)′(p) = g′(f(p))f ′(p),

with the usual row-by-column product between the two matrices g′(f(p)) and f ′(p).

Notice that f : U ⊆ R
k → R

s is Cn if and only if the map f ′ : U → L(Rk,Rs),
given by p 7→ f ′(p), is Cn−1 (i.e. all the entries of matrix valued map f ′ are Cn−1 real
functions). Thus, from the chain rule and the fact that the sum and the product of
Cn−1 real functions is again a Cn−1 real function, one can immediately deduce that the
composition of Cn maps is a Cn map.

As above, let f : U → R
s be defined on an open subset U of R

k. Let p be a point in
U and E a subspace of R

k. The partial derivative with respect to E of f at p, denoted by
DEf(p), is just the Fréchet derivative at the origin of the composite map h 7→ f(p+ h),
regarded as defined on the open subset (U − p)∩E of E. Obviously, DEf(p) is a linear
operator from E into R

s and, when f is differentiable at p, as a consequence of the chain
rule, coincides with the restriction to E of f ′(p).

In the particular case where R
k = E1×E2, the partial derivatives of f at p = (p1, p2)

with respect to the subspaces E1 × {0} and {0} ×E2 will be simply denoted by D1f(p)
and D2f(p), respectively. Observe that if f is differentiable at p, one has

f ′(p)(h1, h2) = f ′(p)(h1, 0) + f ′(p)(0, h2).

Therefore, since D1f(p) and D2f(p) coincide, respectively, with the restrictions of f ′(p)
to E1 × {0} and {0} × E2, we get

f ′(p)(h1, h2) = D1f(p)h1 +D2f(p)h2.

We state without proof two fundamental results in differential calculus which will
turn out to be useful later. They can be proved by means of the well-known Banach
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contraction principle and the mean value theorem for vector valued maps. It is not hard
to show, however, that these results can be deduced from each other. Therefore, they
may be considered equivalent.

Inverse Function Theorem.Let f : U → R
k be a Cα map on an open subset U of R

k.
Assume that for some p ∈ U the derivative f ′(p) is an isomorphism. Then there exists
an open neighborhood W of p with the following properties:

1. f is one-to-one on W ;

2. f(W ) is open;

3. f−1 : f(W ) → R
k is Cα.

Implicit Function Theorem. Let f : U → R
s be a Cα map on an open subset U of

the product space R
k × R

s and let (p, q) ∈ U be such that f(p, q) = 0. Assume that the
partial derivative D2f(p, q) is an isomorphism. Then, in a convenient neighborhood of
(p, q), f−1(0) is the graph of a Cα map, ϕ : W → R

s, defined in a neighborhood W of p
in R

k.

Exercise 1.3. Prove that if f satisfies the assumptions of the Inverse Function Theorem,
then (f−1)′(y) = (f ′(f−1(y)))−1 for all y ∈ f(W ).

Hint. Apply the chain rule to the composition f ◦ f−1.

Exercise 1.4. Prove that the map which assigns to any nonsingular matrix A ∈ GL(Rk)
its inverse A−1 ∈ L(Rk) is smooth (thus, it is a diffeomorphism of GL(Rk) onto itself).

Exercise 1.5. Let f : U → R
k be a smooth one-to-one map on an open subset of R

k.
Prove that if f ′(x) is invertible for all x ∈ U , then f−1 : f(U) → R

k is smooth.

Hint. Use the inductive definition of Cn map and the formula for the first derivative of
f−1.

The second derivative at a point p ∈ U of a differentiable map f : U ⊆ R
k → R

s,
denoted by f ′′(p), is just the derivative at p of f ′ : U → L(Rk,Rs). Thus, f ′′(p) belongs
to the space L(Rk, L(Rk,Rs)) of the linear operators from R

k into L(Rk,Rs). It is easy
to check that L(Rk, L(Rk,Rs)) is canonically isomorphic to the space L2(Rk; Rs) of the
bilinear operators from R

k into R
s. Throughout this notes it is convenient to regard

f ′′(p) as such a bilinear operator.

To see how f ′′(p) operates on a pair of vectors (u, v) ∈ R
k × R

k one may proceed as
follows. Fix U and compute, for all x in U , the directional derivative f ′(x)u. One gets
again a map, x 7→ f ′(x)u, from U into R

s. Then, take the directional derivative at p, in
the direction v, of this map. The result is just f ′′(p)(u, v). Derivatives of order greater
than two may be computed in a similar manner.

If f : U ⊆ R
k → R

s is a C2 map, then, for any p ∈ U , f ′′(p) turns out to be
a symmetric operator (i.e. f ′′(p)(u, v) = f ′′(p)(v, u) for any (u, v) ∈ R

k × R
k). This
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is a simple consequence of the classical Schwarz theorem on the inversion of partial
derivatives. In fact, we have seen before that f ′′(p)(u, v) can be computed as two
successive directional derivatives. Thus, if we consider the C2 map ϕ(t, s) = f(p+ tu+
sv), which is defined in a suitable neighborhood of the origin of R

2, we get

f ′′(p)(u, v) =
∂2ϕ

∂t∂s
(0, 0) =

∂2ϕ

∂s∂t
(0, 0) = f ′′(p)(v, u).

We are now interested in extending the notion of a Cα map, α ∈ N ∪ {∞}, to the
case where f : X → R

s is defined on an arbitrary subset X of R
k. In this case, if p ∈ X

is not in the interior of X, the notion of partial derivative of f at p does not make sense
any more. Consequently, the above inductive definition of Cn maps on open sets breaks
down in this general situation. The needed extension is obtained, loosely speaking, by
forcing down the well-known hereditary property of Cn maps on open sets. In other
words, by requiring that the restriction of a Cn map to any subset of its domain is again
a Cn map. We observe that the following definition preserves also the local property of
Cn maps: that is, any map which is locally Cn is also globally Cn.

Definition 1.1. A map f : X → Y , from a subset of R
k into a subset of R

s, is said to
be Cα, α ∈ N ∪ {∞}, if for any p ∈ X there exists a Cα map g : U → R

s, defined on an
open neighborhood of p, such that f(x) = g(x) for all x ∈ U ∩X.

In other words, f : X ⊆ R
k → Y ⊆ R

s is Cα if it can be locally extended as a
map into R

s (not merely into Y ) to a Cα map defined on an open subset of R
k. To

understand why one must seek the extension of f as a map into R
s, observe that the

identity i : [0, 1] → [0, 1] is not the restriction of any C1 function g : U → [0, 1] defined
on an open neighborhood U of [0, 1].

A practical way to assign a Cα map on an arbitrary subset X of R
k is writing down

a Cα map whose “natural domain” is an open set containing X. For example, a real
function obtained by the sum, the product, the quotient and the composition of smooth
functions defined on open sets is a smooth map on a set which is still open. Thus, if
this function is well defined on X, its restriction to X is smooth.

Remark 1.1. Using the well-known fact that any family of open subsets of R
k admits

a subordinate smooth partition of unity, it is easy to show that any Cα map on X ⊆ R
k

is actually the restriction of a Cα map defined on an open neighborhood of X.

As a straightforward consequence of the definition one gets that, given X ⊆ R
k,

the identity i : X → X is a smooth map. Moreover, we observe that the composition
of Cα maps between arbitrary Euclidean sets is again a Cα map, since the same is
true for maps defined on open sets. Thus, one can view Euclidean sets as objects of a
category, whose morphisms are the Cα maps. The study of such a category is the goal
of differential topology (in Euclidean spaces).

We recall that in any category one has the concept of isomorphism, which by defini-
tion is just an invertible morphism. The isomorphisms of some categories have specific
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names. In the case of topological spaces, for example, they are called homeomorphisms.
In the category of Euclidean set with Cα-maps as morphisms, the name of an isomor-
phism is diffeomorphism, or Cα-diffeomorphism, to be more specific.

Definition 1.2. A Cα map f : X → Y , from a subset X of R
k into a subset Y of R

s,
is said to be a Cα-diffeomorphism if it is one-one, onto, and f−1 is Cα. In this case X
and Y are said to be Cα-diffeomorphic.

A straightforward consequence of the definition of diffeomorphism (and the heredi-
tary property of Cα-maps) is that

the restriction of a Cα-diffeomorphism is again a
Cα-diffeomorphism onto its image.

A very important example of a Cα-diffeomorphism is given by the graph map asso-
ciated with a Cα map f : X → R

s defined on an arbitrary subset of R
k. In fact, let

Gf denote the graph of f ; that is, the subset of R
k × R

s consisting of the ordered pairs

(x, y) given by the equation y = f(x). The graph map of f , f̂ : X → Gf , defined by

f̂(x) = (x, f(x)), is clearly Cα, one-one and onto. Observe now that f̂−1 is just the
restriction to Gf of the projection (x, y) 7→ x of R

k × R
s onto the first factor, which is

a linear map (and, consequently, smooth). We have therefore proved that

the graph of a Cα map is Cα-diffeomorphic to its domain.

Perhaps, the simplest example of a smooth homeomorphism which is not a diffeo-
morphism is given by the map t 7→ t3 from R onto itself. In fact, observe that if a
smooth map f : R → R is a diffeomorphism, as a consequence of the chain rule, one has
f ′(t) 6= 0 for all t ∈ R; and the above map does not have this property.

More generally, if f : U → f(U) ⊆ R
s is a C1-diffeomorphism from an open subset

U of R
k onto its image f(U), then the derivative of f at any point p ∈ U must be

injective. To see this, let g be any C1-extension of f−1 : f(U) → R
k to an open subset

W of R
s containing f(U). We have g(f(x)) = x for all x ∈ U . Thus, by the chain rule,

g′(f(p))f ′(p) is the identity in L(Rk), and this shows that f ′(p) is one-one.

Later we will give a notion of derivative at a point p ∈ X for any C1 map f : X → R
s

defined on an arbitrary subset X of R
k. We shall prove that this extended notion of

derivative still has the property that if f : X → R
s is a C1-diffeomorphism onto its

image, then the derivative of f at any point p ∈ X is an injective linear operator
(defined on an appropriate subspace Tp(X) of R

k).

Let X ⊆ R
2 denote the graph of the absolute value function. Clearly the restriction

to X of the first projection π1 : R
2 → R is a smooth homeomorphism, but not a C1-

diffeomorphism, since its inverse x 7→ (x, |x|) is not C1. This, however, does not prove
that X is not C1-diffeomorphic to R. We will see later, with the aid of the extended
notion of derivative, that no C1-diffeomorphism is possible between X and R (as our
intuition suggests).
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Let X be a subset of R
k and let p ∈ X. A unit vector v ∈ Sk−1 = {x ∈ R

k : |x| = 1}
is said to be tangent to X at p if there exists a sequence {pn} in X \{p} such that pn → p
and (pn − p)/|pn − p| → v. Observe that, because of the compactness of the unit sphere
Sk−1, if p is an accumulation point of X, there exists at least a unit vector tangent to
X at p. The following definition of tangent cone is based on the above notion of unit
tangent vector. It is fairly easy to check (see Exercise 1.6 below) that it is equivalent to
the classical one introduced by Bouligand in [Bo] (see also [Se], p. 149, for a precursor
of this notion). However, we find the definition below more convenient to prove some
useful properties of Cα maps defined on arbitrary subsets of Euclidean spaces.

Definition 1.3. Let X be a subset of R
k and let p ∈ X. If p is an isolated point of X,

then the tangent cone of X at p, Cp(X), is just the trivial subspace {0} of R
k. If p is an

accumulation point of X, then Cp(X) is the cone generated by the set of unit tangent
vectors. That is, Cp(X) = {λv : λ ≥ 0, v ∈ Sk−1 is tangent to X at p}. The tangent
space of X at p, Tp(X), is the vector space spanned by Cp(X).

Observe that the notion of tangent cone is local. That is, if two sets X and Y
coincide in a neighborhood of a common point p, they have the same tangent cone.
Another important property is translation invariance: Tp(X) = Tx+p(x + X), for all
x ∈ R

k.

Exercise 1.6. Prove that the tangent cone defined above coincides with the Bouligand
cone. That is, given X ⊆ R

k and p ∈ X, a vector v ∈ R
k is in Cp(X) if and only if

lim inf
t→0+

dist (p+ tv,X)

t
= 0,

where dist (p+ tv,X) denotes the distance between the point p+ tv and the set X.

Exercise 1.7. Let X be a subset of R and p ∈ X. Prove that for Cp(X) we have only
four possibilities: {0}, R, (−∞, 0], [0,+∞).

Exercise 1.8. Let X ⊆ R
k and p ∈ X. Prove that Cp(X) is closed in R

k.

Exercise 1.9. Let X ⊆ R
k and Y ⊆ R

s. Given (p, q) ∈ X × Y , prove that

T(p,q)(X × Y ) = Tp(X) × Tq(Y ).

Exercise 1.10. Prove that if X is convex, then Cp(X) coincides with the closure of the
set {λ(x− p) : λ ≥ 0, x ∈ X} .

Exercise 1.11. Prove that a locally compact subset X of R
m is open if and only if

Cx(X) = R
m for all x ∈ X. Find an example to show that this assertion is not true if

the assumption that X is locally compact is removed.

Exercise 1.12. Let f : U → R
s be a continuous map defined on an open subset of R

k.
Prove that f is differentiable at p ∈ U if and only if the tangent space at (p, f(p)) to
the graph Gf of f is a graph (in this case T(p,f(p))(Gf ) is just the graph of f ′(p)). Use
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this fact to give a possible definition of derivative for maps defined on arbitrary subsets
of R

k.

The following result is helpful for the computation of the tangent cone of a set
defined by inequalities. Its proof, based on the Inverse Function Theorem, is left to the
experienced reader.

Theorem 1.1. Let f : U → R
s be a C1 map defined on an open subset of R

k. Let
Y ⊆ R

s and p ∈ f−1(Y ). Assume that p is a regular point of f , i.e. the derivative
f ′(p) : R

k → R
s of f at p is surjective. Then

Cp(f
−1(Y )) = {v ∈ R

k : f ′(p)v ∈ Cf(p)(Y )} = f ′(p)−1(Cf(p)(Y )).

To understand the meaning of Theorem 1.1, consider for example in R
2 a set X

defined by three inequalities of the type f1(x1, x2) ≤ 0, f2(x1, x2) ≤ 0, f3(x1, x2) ≤ 0,
where f1, f2, f3 are C1 real functions on R

2. So, depending on the three functions, one
can think of X as some kind of triangular patch. We assume that X is locally defined by
at most two of the three above inequalities. In other words if, for example, p = (p1, p2)
satisfies the conditions f1(p) = 0 and f2(p) = 0, then f3(p) must be negative; so that the
function f3 does not contribute to the local definition of X in a neighborhood of p (in
this case a convenient neighborhood of p is given by {(x1, x2) ∈ R

2 : f3(x1, x2) < 0}).
According to Theorem 1.1, to compute Cp(X) for such a (vertex) point p we proceed as
follows. We define a map f : R

2 → R
2 by considering the two functions f1 and f2 as

components of f . The assumption that p is a regular point for f means that the two
linear functionals f ′1(p) and f ′2(p) are linearly independent; therefore the intersection of
the two closed half planes f ′1(p)v ≤ 0, f ′2(p)v ≤ 0 is a nontrivial non-flat convex angle
(as in the vertex of a triangle). By Theorem 1.1, this angle is just the tangent cone to
X at p.

The case f1(p) = 0, f2(p) < 0 and f3(p) < 0 may be treated analogously. In this
case, in fact, only the function f1 contributes to the local definition of X. Therefore the
regularity assumption of Theorem 1.1 means that the gradient of f1 at p, ∇f1(p), does
not vanish. Hence, for such a point, again as a consequence of Theorem 1.1, Cp(X) is
the half plane {v ∈ R

2 : f ′1(p)v ≤ 0}.

A slightly more general situation may be considered. We could define X ⊆ R
2 by a

finite number of inequalities of the form

f1(x1, x2) ≤ 0, f2(x1, x2) ≤ 0, . . . , fn(x1, x2) ≤ 0,

obtaining, in this case, some kind of polygonal patch in R
2. As before, in order that the

regularity assumption be satisfied, X must be locally defined by at most two of these
n inequalities (there are no surjective linear operators from R

2 into R
s if s > 2). Now,

the analysis of this apparently more complicated example proceeds as before, and one
gets three possibilities for the tangent cone: R

2, a half plane, a convex nontrivial angle.
Therefore, in any of these cases the tangent space is R

2.
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Another interesting simple example is given by considering in R
3 the hemisphere

X = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = 1, x3 ≥ 0}.

Applying Theorem 1.1 to a point p = (p1, p2, p3) which does not belong to the equator
(i.e. with p3 > 0) we obtain

Cp(X) = {(v1, v2, v3) ∈ R
3 : p1v1 + p2v2 + p3v3 = 0},

and, consequently, Tp(X) = Cp(X). On the other hand, if p is on the equator, one has

Cp(X) = {(v1, v2, v3) ∈ R
3 : p1v1 + p2v2 = 0, v3 ≥ 0}.

Therefore Tp(X) is the plane

{(v1, v2, v3) ∈ R
3 : p1v1 + p2v2 = 0},

which can be obtained, as in the case of p not on the equator, by simply linearizing (at
p) the equation x2

1 + x2
2 + x2

3 = 1 (the inequality x3 ≥ 0 does not contribute in defining
Tp(X)).

Roughly speaking, what we may deduce from the analysis of the previous examples
can be summarized and generalized as follows. The tangent cone at p ∈ X of a subset
X of R

k “regularly” and “essentially” defined (in a neighborhood of p) by a system
consisting of a finite number of inequalities, f1(x) ≤ 0, f2(x) ≤ 0,. . . fr(x) ≤ 0, and
a finite number of equations, g1(x) = 0, g2(x) = 0,. . . , gs(x) = 0, is obtained by
“linearizing” at p the given system. The tangent space is defined just by the equations
of the linearized system. More precisely, if p is a regular point for the map h : R

k → R
r+s

obtained by considering (as components) the real functions f1,. . . , fr, g1,. . . gs, and if
the condition h(p) = 0 ∈ R

r+s is satisfied, then as a consequence of Theorem 1.1, we get

Cp(X) = {v ∈ R
k : f ′1(p)v ≤ 0, . . . , f ′r(p)v ≤ 0; g′1(p)v = 0, . . . , g′s(p)v = 0},

and

Tp(X) = {v ∈ R
k : g′1(p)v = 0, . . . , g′s(p)v = 0}.

Given a C1 map f : X → Y from a subset X of R
k into a subset Y of R

s and a point
p ∈ X, we shall define a linear operator f ′(p) from Tp(X) into T )f(p)(Y ), called the
derivative of f at p, which maps the tangent cone of X at p into the tangent cone of Y
at f(p). This derivative will turn out to satisfy the two well-known functorial properties
of the Fréchet derivative. That is, “the derivative of the identity map i : X → X is the
identity on Tp(X)”, and “the derivative at p ∈ X of the composition of two C1 maps,
f : X → Y and g : Y → Z, is the composition g′(f(p))f ′(p) of the two derivatives”.
To achieve this, we need the following three lemmas. The first one extends the well-
known fact that the Fréchet derivative can be computed as a directional derivative. Its
elementary proof is left to the reader.
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Lemma 1.1. Let f : U → R
s be defined on an open subset of R

k and differentiable at
p ∈ U . If v ∈ Sk−1 is a unit vector, then

f ′(p)v = lim
n→∞

f(pn) − f(p)

|pn − p|
,

where {pn} is any sequence in U \ {p} such that pn → p and (pn − p)/|pn − p| → v.

Lemma 1.2. Let f : U → R
s be defined on an open subset of R

k and differentiable
at p ∈ U . If f maps a subset X of U containing p into a subset Y of R

s, then f ′(p)
maps Cp(X) into Cf(p)(Y ). Consequently, because of the linearity of f ′(p), it also maps
Tp(X) into Tf(p)(Y ).

Proof. It is sufficient to show that if v ∈ Sk−1 is tangent to X at p, then f ′(p)v is
tangent to Y at f(p). For this, let {pn} be a sequence in X \ {p} such that pn → p
and (pn − p)/|pn − p| → v. By Lemma 1.1, we have (f(pn) − f(p))/|pn − p| → f ′(p)v.
If f ′(p)v = 0 there is nothing to prove, since 0 ∈ Cf(p)(Y ) by the definition of tangent
cone. On the other hand, if f ′(p)v 6= 0, we have f(pn) 6= f(p), provided that n is large
enough. Thus, for such n’s, we can write

f(pn) − f(p)

|f(pn) − f(p)|
=

|pn − p|

|f(pn) − f(p)|

f(pn) − f(p)

|pn − p|
.

Therefore,

lim
n→∞

f(pn) − f(p)

|f(pn) − f(p)|
=

f ′(p)v

|f ′(p)v|
,

and this shows that f ′(p)v = λw, where λ > 0 and w ∈ Sk−1 is tangent to Y at f(p). �

Lemma 1.3. Let f, g : U → R
s be defined on an open subset of R

k and differentiable
at p ∈ U . Assume that f and g coincide on some subset of X containing p. Then f ′(p)
and g′(p) coincide on Cp(X) and, consequently, on Tp(X).

Proof. Let ϕ : U → R
s be defined by ϕ(x) = f(x) − g(x); so that ϕ maps X into the

trivial subspace Y = {0} of R
s. Thus, by Lemma 1.2 we obtain

ϕ′(p)v = f ′(p)v − g′(p)v = 0 for any v ∈ Cp(X).

�

Lemma 1.3 ensures that if f : X → R
s is a C1 map on a subset X of R

s and p is a
point in X, then the restriction to Tp(X) of the derivative at p of any C1 local extension
of f to a neighborhood of p in R

k does not depend on the chosen extension. In other
words, all the C1 extensions of f to an open neighborhood of p have the same derivative
with respect to the subspace Tp(X). Moreover, Lemma 1.2 implies that if g is such an
extension and f maps X into Y , then g′(p) maps Tp(X) into Tf(p)(Y ). These two facts
justify the following definition.
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Definition 1.4. Let f : X → Y be a C1 map from a subset X of R
k into a subset Y

of R
s. The derivative of f at p, f ′(p) : Tp(X) → Tf(p)(Y ), is the restriction to Tp(X) of

the derivative at p of any C1 extension of f to a neighborhood of p in R
k.

We point out that this extended derivative inherits the two functorial properties of
the classical derivative (the easy proof of this fact is left to the reader). As a consequence
of this we get the following result.

Theorem 1.2. Let f : X ⊆ R
k → Y ⊆ R

s be a C1-diffeomorphism. Then for any
p ∈ X, f ′(p) : Tp(X) → Tf(p)(Y ) is an isomorphism mapping Cp(X) onto Cf(p)(Y ).

Proof. To simplify the notation, put q = f(p). By the definition of diffeomorphism we
have f−1 ◦ f = iX and f ◦ f−1 = iY , where iX and iY denote the identity on X and Y ,
respectively. Therefore, by the functorial properties of the extended derivative, the two
compositions (f−1)′(q)f ′(p) and f ′(p)(f−1)′(q) coincide, respectively, with the identity
on Tp(X) and Tq(Y ). This means that f ′(p) is invertible and f ′(p)−1 = (f−1)′(q). The
fact that Cp(X) and Cq(Y ) correspond to each other under f ′(p) is a direct consequence
of Lemma 1.2. �

As an application of Theorem 1.2, consider the graph X ⊆ R
2 of the absolute value

function in R. Clearly T(0,0)(X) = R
2. Therefore X cannot be diffeomorphic to R, since

Tp(X) = R for any p in R.

Exercise 1.13. Prove that the set X = {(x, y) ∈ R
2 : x ≥ 0 and y ≥ 0} is not

diffeomorphic to Y = {(x, y) ∈ R
2 : x ≥ 0 or y ≥ 0}.

Hint. Use the fact C(0,0)(X) is convex and C(0,0)(Y ) is not.

Problem. Let f : X ⊆ R
k → Y ⊆ R

s be a C1-diffeomorphism. Is it true that if f is
smooth, then f is actually a C∞-diffeomorphism?

Problem. Assume X ⊆ R
k and Y ⊆ R

s are Cn-diffeomorphic, for all n ∈ N. Are they
C∞-diffeomorphic?

Let X be a subset of R
k. We say that a point p ∈ X is regular for X if Tp(X) =

Cp(X). In other words, since Tp(X) is the space spanned by Cp(X), saying that p is a
regular point for X means that Cp(X) is a vector space. A point which is not regular
will be said singular. The set of singular points of X will be denoted by δX.

For example, if X is an n-simplex in R
k, δX is just the union of all the (n− 1)-faces

of X, δδX, denoted by δ2X, is the union of all the (n− 2)-faces of X, and so on.

If X ⊆ R
2 is the graph of the absolute value function, we obviously have δX =

{(0, 0)} and δ2X = ∅.

Observe also that if X is an open subset of R
k, then δX = ∅.

The following straightforward consequence of Theorem 1.2 shows that the concept
of singular point is invariant under diffeomorphisms.
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Theorem 1.3. If f : X → Y is a Cα-diffeomorphism, then it maps δX onto δY .
Consequently, for any n ∈ N, δnX and δnY are Cα-diffeomorphic.

Let us see now how the notion of a tangent cone may turn out to be useful in studying
minimum problems for real C1-functions in arbitrary Euclidean sets.

Theorem 1.4 (First order necessary condition for a minimum point). Let
p ∈ X be a relative minimum point for a C1 map f : X → R. Then f ′(p)v ≥ 0 for all
v ∈ Cp(X). Consequently, if p is a regular point of X, then f ′(p) : Tp(X) → R is the
null map.

Proof. Since both the notions of tangent cone and of minimum point are local ones,
one may assume, replacing X with a neighborhood of p in X if necessary, that f(X) is
contained in the half line Y = [f(p),∞). Thus f ′(p) maps Cp(X) into Cf(p)([f(p),∞)) =
[0,∞), and the assertion is proved. �

Obviously, if p ∈ X is a maximum point for f , applying Theorem 1.4 to −f , we
get f ′(p)v ≤ 0 for all v ∈ Cp(X). From this we shall deduce the following sufficient
condition for a (relative) minimum point. Thus, in some sense, we may regard the
sufficient condition as a consequence of the necessary one.

Theorem 1.5 (First order sufficient condition for a minimum point). Assume
that f : X → R is C1. If f ′(p)v > 0 for all v ∈ Cp(X) \ {0}, then p is a (strict) relative
minimum point for f .

Proof. Assume that the assertion is false and define A = {x ∈ X : f(x) ≤ f(p)}.
Clearly p is an accumulation point for A and, consequently, there exists a nonzero
vector v ∈ Cp(A). By the definition of A, p is a maximum point for f in A; therefore,
by the necessary condition (for a maximum point), we get f ′(p)v ≤ 0. This contradicts
our assumption, since the inclusion A ⊆ X implies Cp(A) ⊆ Cp(X). �

We will go further with the analysis of the relationship between the notion of tangent
cone and the study of minimum problems for a “nice” function f restricted to a “not
necessarily nice” subset X of R

k. We will analyze what can be deduced from the
knowledge of the second order Taylor formula of the function f at a point p ∈ X. In
this case, however, we shall assume f to be defined in a neighborhood U of X. The
reason for this, as we shall see later, is due to the fact that the second order conditions
for p ∈ X to be a relative minimum point for the restriction of f to X do depend on
the behavior of f in a complete neighborhood of p in R

k. This is in contrast with the
first order case.

Theorem 1.6 (Second order necessary condition for a minimum point). Let
X be a subset of R

k, U an open set containing X and f : U → R a C2 real function.
Assume that p ∈ X is a relative minimum point for f in X. If f ′(p)v = 0, for all
v ∈ R

k, then f ′′(p)(v, v) ≥ 0, for all v ∈ Cp(X).
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Proof. It is enough to prove that if v ∈ Cp(X) is a unit vector, then f ′′(p)(v, v) ≥ 0.
So, let {pn} be a sequence in X \ {p} such that pn → p and (pn − p)/|pn − p| → v. Since
p is a relative minimum point for f in X, we have for n sufficiently large

0 ≤ f(pn) − f(p) = f ′(p)(pn − p) +
1

2
f ′′(p)(pn − p, pn − p) + o(|pn − p|2).

Thus
0 ≤ f ′′(p)(pn − p, pn − p) + |pn − p|2ω(pn − p),

where ω(x) → 0 as x→ 0.

Dividing by |pn − p|2 and passing to the limit we get f ′′(p)(v, v) ≥ 0, as claimed. �

As for the first order case, the second order sufficient condition can be deduced
directly from the necessary condition. The following result requires that the gradient of
f at p ∈ X is zero. We shall later remove this assumption.

Theorem 1.7 (Second order sufficient condition for a minimum point). Let X
be a subset of R

k, U an open set containing X and f : U → R a C2 real function. Let
p ∈ X be such that f ′(p)v = 0 for all v ∈ R

k, and f ′′(p)(v, v) > 0 for all v ∈ Cp(X)\{0}.
Then p is a (strict) relative minimum point for f in X.

Proof. Assume that the assertion is false. As in the proof of Theorem 1.5 define
A = {x ∈ X : f(x) ≤ f(p)} and let v ∈ Cp(A) \ {0}. Since p is a minimum point for
−f in A, by the necessary condition we get f ′′(p)(v, v) ≤ 0. And this is a contradiction,
since A ⊆ X implies v ∈ Cp(X) \ {0}. �

We observe that in Theorem 1.7, the assumption that the gradient of f vanishes
at p ∈ X is not restrictive when p is an interior point of X. In fact, in this case, this
condition is necessary for p to be a relative minimum point. The assumption is not
restrictive even when X ⊆ R

k is C1-diffeomorphic to an open subset of R
m (as in the

case of the Lagrange multipliers). In fact, Theorem 1.4 implies that if p is a (relative)
minimum point for f in X, then the gradient of f at p, ∇f(p), must be orthogonal
to Tp(X); and in this case one may show that it is possible to (locally) modify f ,
exclusively outside X, by adding a new function (vanishing in X) in such a way that
the gradient of the modified function turns out to be zero at p. This is actually what
one does dealing with Lagrange multipliers, where the modified map is of the type
Fλ(x) = f(x) − 〈λ, g(x)〉, with λ ∈ R

k−m a suitable “multiplier”, and g : W → R
k−m a

convenient map (according to Theorem 2.2 below).

The example below shows that the condition ∇f(p) = 0 of Theorem 1.7 may be too
restrictive in some cases. We shall present therefore an extension of this theorem, where
the above condition is replaced by the following weaker one:

〈∇f(p), x− p〉 ≥ 0 for all x in a convenient neighborhood of p in X.

Let X be the subset [0,∞) × [0,∞) of R
2 and let f : R

2 → R be defined by

f(x, y) = y cosx+ x2 − y2 − xy2 + x sin(y3 − x2).
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Thus, one can write

f(x, y) = y + x2 − y2 + o(|v|2),

where v = (x, y). The necessary condition for p = (0, 0) to be a (relative) minimum
point (for f in X) is satisfied, since the first derivative of f at p applied to a vector (x, y)
is just y (i.e. the homogeneous polynomial of degree one in the Taylor expansion of f at
p). On the other hand, we observe that neither Theorem 1.5 nor Theorem 1.7 can be
applied to check whether p is actually a minimum point. Moreover, since Tp(X) = R

2,
there is no way to modify f outside X in order to get a map with zero gradient at p.
However, Theorem 1.8 below shows immediately that p is a (relative) minimum point
for f in X (the conditions ensuring this can be easily checked in the above second order
Taylor formula). As far as we know the following simple result seems to be unknown.

Theorem 1.8 (Mixed order sufficient condition for a minimum point). Let
X be a subset of R

k, U an open set containing X and f : U → R a C2 real function.
Assume that p ∈ X is a relative minimum point for the restriction to X of the linear
functional f ′(p) : R

k → R. If

f ′′(p)(v, v) > 0 for all v ∈ (Ker f ′(p) ∩ Cp(X)) \ {0},

then p is a (strict) relative minimum point for f in X.

Proof. By the Taylor formula we have

f(x) − f(p) = f ′(p)(x− p) +
1

2
f ′′(p)(x− p, x− p) + |x− p|2ω(x− p),

where ω(z) → 0 as z → 0. Therefore, assuming that the assertion is false, one can find
a sequence {pn} in X \ {p} such that pn → p, (pn − p)/|pn − p| → v ∈ Cp(X) and

0 ≥ f ′(p)(pn − p) +
1

2
f ′′(p)(pn − p, pn − p) + |pn − p|2ω(pn − p).

Dividing by |pn − p| and passing to the limit we get f ′(p)v ≤ 0. Since p is a relative
minimum point for f ′(p) in X, we have f ′(p)(pn − p) = f ′(p)pn − f ′(p)p ≥ 0, for n
sufficiently large. Thus f ′(p)v ≥ 0 and consequently v ∈ Ker f ′(p) ∩ Cp(X). Since
f ′(p)(pn − p) ≥ 0, a fortiori one has

0 ≥
1

2
f ′′(p)(pn − p, pn − p) + |pn − p|2ω(pn − p).

Therefore, dividing by |pn − p|2 and passing to the limit we obtain f ′′(p)(v, v) ≤ 0,
contradicting the assumption that f ′′(p) is positive definite on Ker f ′(p) ∩ Cp(X). �

We point out that in the case where X is convex (at least in a neighborhood of
p ∈ X) the condition of Theorem 1.8 that p is a relative minimum point for the linear
functional f ′(p) is necessary for p to be a (relative) minimum point for f in X. To see
this, observe that when p is an interior point, this condition is equivalent to requiring
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that f ′(p) is the zero functional. If, on the other hand, p is on the boundary of X and
f ′(p) is nonzero, the condition means that X lies (locally) in the halfspace

{x ∈ R
k : f ′(p)(x− p) ≥ 0}.

Thus, since (for a convex set X) Cp(X) coincides with the closure of

{λ(x− p) : λ ≥ 0, x ∈ X},

the assumption that p is a relative minimum point for the linear functional f ′(p) is
equivalent to the first order necessary condition f ′(p)v ≥ 0 for all v ∈ Cp(X).

2. Differentiable manifolds in Euclidean spaces

A subset M of R
k is called a (boundaryless) m-dimensional (differentiable) manifold

of class Cα, α ∈ N ∪ {∞}, if it is locally Cα-diffeomorphic to R
m; meaning that any

point p of M admits a neighborhood (in M) which is Cα-diffeomorphic to an open subset
of R

m. A Cα-diffeomorphism ϕ : W → V ⊆ M from an open subset W of R
m onto

an open subset V of M is called a parametrization (of class Cα of V ). The inverse of
a parametrization ϕ−1 : V → W is called a chart or a coordinate system on V , and its
component functions, x1, x2,. . . , xm, are the coordinate functions of ϕ−1 on V .

As an example observe that the graph of any Cα-map f : W → R
s defined on an

open subset of R
m is a Cα-manifold of dimension m. In fact, as observed before, the

graph of any Cα map is Cα-diffeomorphic to its domain. Therefore, in particular, the
m-dimensional sphere Sm = {x ∈ R

m+1 : |x|2 = 1} is a smooth m-dimensional manifold,
being locally the graph of a C∞ real function defined on the open unit ball of an m-
dimensional subspace of R

m+1. Observe also that any open subset of a differentiable
manifold is again a differentiable manifold.

As a straightforward consequence of the definition, any point p of an m-dimensional
C1-manifold M is non-singular (i.e. Cp(M) = Tp(M)). Moreover, dimTp(M) = m.
In fact, since this property is true for open subsets of R

m, according to Theorem 1.2,
it holds true for m-dimensional C1-manifolds. Incidentally, observe that Theorem 1.2
provides a practical method for computing Tp(M). That is, if ϕ : W → V is a any
C1-parametrization of a neighborhood V of p in M , then Tp(M) = Imϕ′(w), where
ϕ(w) = p.

The following direct consequence of the Implicit Function Theorem can be used to
produce a large variety of examples of differentiable manifolds. It gives also a useful
tool to compute the tangent space at any given point of a manifold. We recall first that
if f : U → R

s is a C1 map on an open subset U of R
k, an element p ∈ U is said to be a

regular point (of f) if the derivative f ′(p) of f at p is surjective. Non-regular points are
called critical (points). The critical values of f are those points of the target space R

s

which lie in the image f(C) of the set C of critical points. Any y ∈ R
s which is not in

f(C) is a regular value. Therefore, in particular, any element of R
s which is not in the
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image of f is a regular value. Notice that, in this terminology, the words “point” and
“value” refer to the source and target spaces, respectively.

Theorem 2.1 (Regularity of the level set). Let f : U → R
s be a Cα mapping

of an open subset of R
k into R

s. If 0 ∈ R
s is a regular value for f , then f−1(0) is a

Cα-manifold of dimension m = k − s. Moreover, given p ∈ f−1(0), we have

Tp(f
−1(0)) = Ker f ′(p).

Proof. Choose a point p ∈ f−1(0) and split R
k into the direct sum Ker f ′(p) ⊕

Ker f ′(p)⊥. Since by assumption f ′(p) : R
k → R

s is onto, the restriction of f ′(p) to
Ker f ′(p)⊥ is an isomorphism. Observe that this restriction is just the second partial
derivative, D2f(p), of f at p with respect to the given decomposition. It follows by the
Implicit Function Theorem that in a neighborhood of p, f−1(0) is the graph of a Cα

map ϕ : W → Ker f ′(p)⊥ defined on an open subset W of Ker f ′(p). Recalling that the
graph of a Cα map is Cα diffeomorphic to its domain, we get that in a neighborhood of
p, f−1(0) is a Cα-differentiable manifold whose dimension is dim Ker f ′(p) = k − s.

To prove that Tp(f
−1(0)) = Ker f ′(p) observe first that Tp(f

−1(0)) ⊆ Ker f ′(p). In
fact, f maps f−1(0) into {0} and, consequently, f ′(p) maps Tp(f

−1(0)) into T0({0}) =
{0}. The equality follows by computing the dimensions of the two spaces. �

To see how Theorem 2.1 can easily be applied to produce examples of differentiable
manifolds, consider the map f : R

k → R, given by f(x) = |x|2. Differentiating f we
get f ′(x)h = 2〈x, h〉. Therefore x = 0 is the only critical point of f and, consequently,
f(0) = 0 ∈ R is the only critical value. Thus, for any a > 0, the set

Sk−1
a = {x ∈ R

k : |x| = a}

is a (k− 1)-dimensional smooth manifold in R
k, called the (k− 1)-dimensional sphere of

radius a. Given x ∈ Sk−1
a , the tangent space at x is the hyperplane orthogonal to x, i.e.

Tx(Sk−1
a ) = {h ∈ R

k : 〈x, h〉 = 0}.

A different interesting example is the configuration space of a rigid body in R
3.

Choosing a triangle of vertices p1, p2, p3 in a rigid body, the position in R
3 of these

points gives complete information about the location of the body in the space. Therefore,
the configuration space can be regarded as the set

M = {(p1, p2, p3) ∈ R
3 × R

3 × R
3 : |p1 − p2| = a3, |p2 − p3| = a1, |p3 − p1| = a2},

where the edges a1, a2, a3 of the chosen triangle are fixed. To see that M is a smooth
6-dimensional manifold, consider the map f : R

3 × R
3 × R

3 → R
3, given by

f(p1, p2, p3) =
(

|p1 − p2|
2, |p2 − p3|

2, |p3 − p1|
2
)

.
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Differentiating f at a given position (p1, p2, p3) ∈M , we get

f ′(p1, p2, p3)(ṗ1, ṗ2, ṗ3) = 2 (〈p1 − p2, ṗ1 − ṗ2〉, 〈p2 − p3, ṗ2 − ṗ3〉, 〈p3 − p1, ṗ3 − ṗ1〉) .

In order to apply Theorem 2.1 we have to check that the linear map

f ′(p1, p2, p3) : R
3 × R

3 × R
3 → R

3

is onto. To see this observe first that the vector e1 = (1, 0, 0) belongs to its image. In
fact, to solve the system







〈p1 − p2, ṗ1 − ṗ2〉 = 1,
〈p2 − p3, ṗ2 − ṗ3〉 = 0,
〈p3 − p1, ṗ3 − ṗ1〉 = 0

it is enough to choose ṗ2 = ṗ3 = 0 and ṗ1 orthogonal to p3 − p1 in such a way that
〈p1 − p2, ṗ1〉 = 1. This is clearly possible, since we have assumed the two vectors
p1 − p2 and p3 − p1 to be linearly independent (recall that the three points p1, p2,
p3 are geometrically independent). The same method shows that e2 = (0, 1, 0) and
e3 = (0, 0, 1) are in the image of f ′(p1, p2, p3). Thus, Theorem 2.1 applies to show that
M is a smooth submanifold of R

9. The tangent space of M at (p1, p2, p3) is the subspace
of R

3 × R
3 × R

3 given by

{

(ṗ1, ṗ2, ṗ3) : 〈p1 − p2, ṗ1 − ṗ2〉 = 0, 〈p2 − p3, ṗ2 − ṗ3〉 = 0, 〈p3 − p1, ṗ3 − ṗ1〉 = 0
}

.

Exercise 2.1. The configuration space of a double pendulum is given by

M = {(p1, p2) ∈ R
2 × R

2 : |p1| = a1, |p1 − p2| = a2},

where a1, a2 are two fixed positive numbers. Show that M is a smooth manifold (a two
dimensional torus).

Theorem 2.1 can be partially inverted, in the sense that any Cα differentiable man-
ifold in R

k can be locally regarded as a regular level set (i.e. as the inverse image of
a regular value of a Cα map on an open subset of R

k). In fact, the following theorem
holds.

Theorem 2.2. Let M be an m-dimensional manifold of class Cα in R
k. Then, given

p ∈ M , there exists a map f : U → R
k−m, Cα on a neighborhood U of p in R

k, which
defines M ∩ U as a regular level set.

Proof. Let ϕ : W → R
k be a Cα-parametrization of M around p and let w = ϕ−1(p).

Consider any linear map L : R
k−m → R

k such that ImL⊕ Tp(M) = R
k (this is clearly

possible since dimTp(M) = m), and define g : W × R
k−m → R

k by putting g(x, y) =
ϕ(x) + Ly. The derivative of g at (w, 0) ∈W × R

k−m is given by

g′(w, 0)(h, k) = ϕ′(w)h+ Lk,
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which is clearly surjective (therefore an isomorphism), since Imϕ′(0) = Tp(M). By
the Inverse Function Theorem, g is a Cα-diffeomorphism of a neighborhood of (w, 0)
in W × R

k−m onto a neighborhood U of p in R
k. Let ψ be the inverse of such a

diffeomorphism and define f : U → R
k−m as the composition π2 ◦ ψ of ψ with the

projection π2 : W × R
k−m → R

k−m of W × R
k−m onto the second factor. Clearly, f

satisfies the assertion. �

We point out that there are differentiable manifolds in R
k which cannot be globally

defined as regular level sets. One can prove, in fact, that when this happens the manifold
must be orientable (the definition of orientability and the proof of this assertion would
carry us too far away from the goal of this course). As an intuitive example consider a
Möbius strip M embedded in R

3 and assume M = f−1(0), where f : U → R is a C1

map on an open subset of R
3. If 0 ∈ R were a regular value for f , the gradient of f at

any point p ∈ f−1(0), ∇f(p), would be nonzero. Therefore, the map ν : M → R
3, given

by ν(p) = ∇f(p)/|∇f(p)|, would be a continuous normal unit vector field on M , and
this is well-known to be impossible on the Möbius strip (a one-sided surface).

We want to define now “a concrete” notion of tangent bundle TM associated with a
Cα manifold M in R

k. We will prove that if α ≥ 2, TM is a Cα−1 differentiable manifold
in R

k ×R
k. In order to do this, it is convenient to define the concept of tangent bundle

for any subset of R
k, and to prove that when two sets X and Y are Cα-diffeomorphic,

the corresponding tangent bundles are Cα−1-diffeomorphic.

Definition 2.1. Given X ⊆ R
k, the subset

TX = {(x, y) ∈ R
k × R

k : x ∈ X, y ∈ Tx(X)}

of R
k × R

k is called the tangent bundle of X. The canonical projection π : TX → X is
the restriction to TX of the projection of R

k ×R
k onto the first factor (thus, π is always

a smooth map).

Definition 2.2. Let f : X → Y be a Cα-map from a subset X of R
k into a subset Y

of R
s and assume 1 ≤ α ≤ ∞. The tangent map of f , Tf : TX → TY , is given by

Tf(x, y) = (f(x), f ′(x)y).

As pointed out in Remark 1.1, one may regard a Cα map f : X → Y as the restriction
of a Cα map g : U → R

s defined on an open neighborhood U of X. Consequently, if
α ≥ 1, Tg : TU → TR

s, given by (x, y) 7→ (g(x), g′(x)y), is a Cα−1 map from the open
neighborhood TU = U × R

k of TX into TR
s = R

s × R
s. This proves that Tf , which is

just the restriction to TX of Tg, is a Cα−1 map.

Clearly, if f : X → Y and g : Y → Z are Cα maps, one has T (g ◦ f) = Tg ◦ Tf .
Moreover, if i : X → X is the identity on X, then Ti : TX → TX is the identity
on TX. Therefore, one may regard T as a (covariant) functor from the category of
Euclidean sets with Cα maps into the category of Euclidean sets with Cα−1 maps. This
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implies that if f : X → Y is a Cα-diffeomorphism, then Tf : TX → TY is a Cα−1-
diffeomorphism. Therefore, if M is a Cα manifold of dimension m, since it is locally
Cα-diffeomorphic to the open subsets of R

m, its tangent bundle TM is a Cα−1 manifold
of dimension 2m. Moreover, if ϕ : W → V ⊆ M is a parametrization of an open set V
in M , Tϕ : W × R

m → TV ⊆ TM is a parametrization of the open set TV = π−1(V )
of TM .

Exercise 2.2. Let M ⊆ R
k be an m-dimensional manifold regularly defined (as a zero

level set) by a Cα map f : U → R
s on an open set U of R

k. Prove that if α ≥ 2, TM is
regularly defined by Tf . That is

TM = {(x, y) ∈ R
k × R

k : f(x) = 0, f ′(x)y = 0}

where (0, 0) ∈ R
s × R

s is a regular value for Tf .

Definition 2.3. Let X be a subset of R
k. A Cα tangent vector field on X is a Cα map

g : X → R
k with the property that g(x) ∈ Tx(X) for all x ∈ X. The tangent vector

field g on X is said to be inward if g(x) ∈ Cx(X) for all x ∈ X.

In many textbooks in differential geometry a tangent vector field on a differentiable
manifold M is defined as a cross section of the tangent bundle TM . That is, a map
w : M → TM with the property that the composition π ◦ w : M → M of w with the
bundle projection π is the identity on M . However, in our “concrete” situation (i.e. M
in R

k) this “abstract” definition turns out to be redundant. In fact, observe that, for
M embedded in R

k, a map w : M → R
k ×R

k is a cross section of TM if and only if for
all x ∈ M one has w(x) = (x, g(x)), with g(x) ∈ Tx(M). Therefore, forgetting x in the
pair (x, g(x)), one may accept the simpler definition given above.

To any C1 function f : M → R on a differentiable manifold M ⊆ R
k one can assign a

tangent vector field on M , called the gradient of f and denoted by ∇f , in the following
way:

〈∇f(x), v〉 = f ′(x)v for any v ∈ Tx(M).

In other words, given x ∈M , the gradient of f at x is the vector of Tx(M) corresponding
to f ′(x) ∈ Tx(M)∗ under the isomorphism j : Tx(M) → Tx(M)∗ defined by j(u)v =
〈u, v〉.

Exercise 2.3. Let M be a differentiable manifold in R
k and let f : M → R be the

restriction to M of a C1 function f̂ defined on an open set U containing M . Prove
that, given x ∈ M , ∇f(x) is just the “tangential component” of ∇f̂(x); i.e. the image
of ∇f̂(x) under the orthogonal projection of R

k onto Tx(M).

3. Ordinary differential equations on manifolds

An autonomous first order differential equation on a manifold M ⊆ R
k (or, more

generally, on a subset of R
k) is given by assigning a (continuous) tangent vector field
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g : M → R
k on M . The first order (autonomous) differential equation associated with

g will be written in the form

ẋ = g(x), x ∈M. (3.1)

However, the important fact about a differential equation (or any equation, in gen-
eral) is not the way this is written: what counts is the exact definition of what we mean
by a solution (and this implicitly defines the notion of equation). By a solution of (3.1)
we mean a C1 curve x : J → R

k, defined on a (nontrivial) interval J ⊆ R, which satisfies
the conditions x(t) ∈ M and ẋ(t) = g(x(t)), identically on J . Thus, even if, according
to Remark 1.1, the map g may be thought as defined on an open set U containing M ,
a solution x : J → R

k of
ẋ = g(x), x ∈ U (3.2)

is a solution of (3.1) if and only if its image lies in M . However, if M is closed in U ,
under the uniqueness assumption of the Cauchy problem for (3.2), any solution of (3.2)
starting from a point of M must lie entirely in M (see Exercise 3.1 below).

If ϕ : M → N is a C1-diffeomorphism between two differentiable manifolds and
g is a tangent vector field on M , one gets a tangent vector field h on N by putting
h(z) = ϕ′(ϕ−1(z))g(ϕ−1(z)). In this way, if x ∈ M and z ∈ N correspond under ϕ, the
two vectors h(z) and g(x) correspond under the isomorphism ϕ′(x) : Tx(M) → Tz(N).
For this reason we say that the two vector fields g and h correspond under ϕ (or they
are ϕ-related). We observe that in this case, as an easy consequence of the chain rule for
the derivative (and the definition of solution of a differential equation), equation (3.1)
is equivalent to

ż = h(z), z ∈ N, (3.3)

in the sense that x : J →M is a solution of (3.1) if and only if the composition z = ϕ◦x
is a solution of (3.3). That is, the solutions of (3.1) and (3.3) correspond under the
diffeomorphism ϕ.

A non-autonomous first order differential equation on a manifold M ⊆ R
k is given

by assigning, on an open subset V of R ×M , a non-autonomous (continuous) vector
field g : V → R

k, which is tangent to M for all t ∈ R. That is, for any t ∈ R, the map
gt : Vt → R

k, given by gt(x) = g(t, x), is a tangent vector field on the (possibly empty)
open subset Vt = {x ∈ M : (t, x) ∈ V } of M . In other words, g(t, x) ∈ Tx(M) for each
(t, x) ∈ V .

The first order differential equation associated with g is denoted as follows:

ẋ = g(t, x), (t, x) ∈ V. (3.4)

A solution of (3.4) is a C1 map x : J → M , on an interval J ⊆ R, such that, for all
t ∈ J , (t, x(t)) ∈ V and ẋ(t) = g(t, x(t)).

We point out that (3.4) can be thought as a special autonomous equation on the
open submanifold V of R ×M ⊆ R

k+1. In fact (3.4) is clearly equivalent to the system
{

ṫ = 1,
ẋ = g(t, x), (t, x) ∈ V

(3.5)
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and the vector field (t, x) 7→ (1, g(t, x)) is tangent to V . By “equivalent” we mean that
the solutions (3.4) and (3.5) are in a one-to-one correspondence.

As pointed out before, any differential equation on a manifold M is transformed into
an equivalent one by a diffeomorphism ϕ : M → N . Thus, since differentiable manifolds
are locally diffeomorphic to open subsets of Euclidean spaces, the classical results about
local existence and uniqueness for differential equations in R

m apply immediately to this
more general context. Therefore, given (t0, x0) ∈ V , the continuity of the vector field
g : V → R

k is sufficient to ensure the existence, on an open interval J , of a solution
x : J → M of (3.4) satisfying the Cauchy condition x(t0) = x0. If g is C1 (or, more
generally, locally Lipschitz), two solutions satisfying the same Cauchy condition coincide
in their common domain. Moreover, by considering the partial ordering associated with
the graph inclusion, one gets that any solution of (3.4) can be extended to a maximal
one (i.e. to a solution which is not the restriction of any different solution).

With the same method used to deal with differential equations in R
m, one gets

that the domain of any maximal solution x(·) of (3.4) is an open interval (α, β), with
−∞ ≤ α < β ≤ +∞. Moreover, given any t0 ∈ (α, β) and any compact set K in the
domain V of g : V → R

k, both the graphs of the restrictions of x(·) to (α, t0] and [t0, β)
are not contained in K. This is referred as the Kamke property of the maximal solution
(in a differentiable manifold). In particular, if M is a compact manifold and V = R×M ,
any maximal solution of (3.4) is defined in the whole real axis.

Exercise 3.1. Let g : U → R
k be a continuous vector field defined on an open subset

U of R
k. Assume that for each p ∈ U the equation (3.2) admits a unique maximal

solution x(·) satisfying the Cauchy condition x(0) = p. Prove that if g is tangent to a
C1 manifold M ⊆ U , which is relatively closed in U , then any maximal solution of (3.2)
which meets M must lie entirely in M .

Hint. Use the Kamke property of the maximal solutions of (3.1).

As regards the continuous dependence on data, with the same method used for
differential equations in R

m, one has the following result.

Theorem 3.1. Let M ⊆ R
k be a differentiable manifold and g : V → R

k a locally
Lipschitz non-autonomous vector field (tangent to M) defined on an open subset V of
R×M . Given (τ, p) ∈ V denote (when defined) by x(t, τ, p) the value at t of the maximal
solution through (τ, p). Let {(τn, pn)} be a sequence in V converging to (τ0, p0) ∈ V and
[a, b] a compact interval contained in the domain of x(·, τ0, p0). Then, for n sufficiently
large, x(·, τn, pn) is defined in [a, b] and

x(t, τn, pn) → x(t, τ0, p0)

uniformly in [a, b] as n → ∞. In particular, the set of all (t, τ, p) such that x(t, τ, p) is
well defined is an open subset of R×V (obviously containing any (τ, τ, p) with (τ, p) ∈ V ).

As pointed out before, the tangent bundle TM of an m-dimensional Cα-manifold
M ⊆ R

k is a 2m-dimensional manifold of class Cα−1 in R
k × R

k. Therefore, an au-
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tonomous differential equation on TM will be written in the form
{

ẋ = g(x, y),
ẏ = h(x, y), (x, y) ∈ TM

(3.6)

where the pair of R
k-vectors

(

g(x, y), h(x, y)
)

belongs to the tangent space T(x,y)TM
for any (x, y) ∈ TM . A solution of (3.6) is a C1 map t 7→ (x(t), y(t)) from an interval
J ⊆ R into TM such that ẋ(t) = g(x(t), y(t)), ẏ(t) = h(x(t), y(t)) for all t ∈ J .

As regards the non-autonomous case, we shall, for the sake of simplicity, from now
on consider only the following situation:

{

ẋ = g(t, x, y),
ẏ = h(t, x, y), (t, x, y) ∈ R × TM,

where f : R × TM → R
k and g : R × TM → R

k are continuous maps such that
(

g(t, x, y), h(t, x, y)
)

∈ T(x,y)TM,

for all (t, x, y) ∈ R × TM . In other words, we shall assume that the domain V of
the vector field (t, x, y) 7→ (g(t, x, y), h(t, x, y)) coincides with the whole differentiable
manifold R × TM .

To understand the meaning of a differential equation on TM , it is important to write
down a necessary and sufficient condition for a pair of vectors (ẋ, ẏ) ∈ R

k × R
k to be

tangent to TM at some point (x, y). To compute a generic tangent vector of T(x,y)(TM)
we proceed as follows.

Because of Theorem 2.2, we may assume without loss of generality thatM is regularly
defined as the zero level set of a Cα map f : U → R

s on an open subset of R
k. Here, for

simplicity, we will assume α = ∞. Since in this case the tangent space to M at x ∈ M
is given by

Tx(M) = {y ∈ R
k : f ′(x)y = 0},

we get
TM = {(x, y) ∈ R

k × R
k : f(x) = 0, f ′(x)y = 0}.

According to Exercise 2.2, TM is regularly defined in U × R
k by the two equations

{

f(x) = 0,
f ′(x)y = 0.

Thus, we can iterate the procedure, in order to compute TTM as a regularly defined
(smooth) submanifold of (Rk ×R

k)× (Rk ×R
k). Differentiating these two equations, we

obtain

TTM = {(x, y; ẋ, ẏ) : f(x) = 0, f ′(x)y = 0; f ′(x)ẋ = 0, f ′′(x)(ẋ, y) + f ′(x)ẏ = 0},

and this implies that (ẋ, ẏ) ∈ T(x,y)(TM) if and only if

{

f ′(x)ẋ = 0,
f ′′(x)(ẋ, y) + f ′(x)ẏ = 0.
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In other words, given (x, y) ∈ TM , (ẋ, ẏ) ∈ R
k × R

k is in T(x,y)(TM) if and only if ẋ is

an arbitrary vector in Tx(M) and ẏ ∈ R
k satisfies the condition

f ′(x)ẏ = ψ(x; y, ẋ), (3.7)

where ψ(x, y, ẋ) = −f ′′(x)(ẋ, y). Observe that ψ is a smooth mapping from the vector
bundle

T 2M = {(x;u, v) ∈ R
k × (Rk × R

k) : x ∈M ;u, v ∈ Tx(M)},

into R
k, and is bilinear and symmetric with respect to the last two variables.

Since M is regularly defined by the equation f(x) = 0, given x ∈M , the linear map
f ′(x) is onto. This means that once the two vectors y, ẋ ∈ Tx(M) have been assigned,
the equation (3.7) can be solved with respect to ẏ. Let us compute the set of solutions
ẏ of the equation (3.7). Given z ∈ R

k, denote by Az the unique solution of f ′(x)ẏ = z
which lies in the space Ker f ′(x)⊥ = Tx(M)⊥. That is, A : R

k → Tx(M)⊥ is the inverse
of the restriction to Tx(M)⊥ of f ′(x). Thus, any solution of the linear equation (3.7)
can be expressed in the form

ẏ = ν(x; y, ẋ) + w,

where ν(x; y, ẋ) = Aψ(x; y, ẋ) is the unique solution of (3.7) in the space Tx(M)⊥ and
w is an arbitrary vector in Tx(M) = Ker f ′(x).

From the above argument one can deduce that, given (x, y) in TM , to assign an
arbitrary vector (ẋ, ẏ) in T(x,y)(TM) it is sufficient to choose v and w arbitrarily in
Tx(M) and to define (ẋ, ẏ) = (v, ν(x; y, v) +w). Observe that this is in accord with the
fact that T(x,y)(TM) must be a 2m-dimensional subspace of R

k × R
k.

The above definition of the mapping ν : T 2M → R
k seems to depend on the function

f : U → R
s we have used to cut M (as a regular level set). This is a false impression.

Roughly speaking, ν depends only on how M is twisted in R
k. To convince oneself,

observe that the concepts of tangent space and tangent bundle have been given for any
subset of R

k. If the set M happens to be a smooth manifold (actually, C2 is sufficient),
then given x ∈ M and y, ẋ ∈ Tx(M), the vector ν(x; y, ẋ) turns out to be the common
normal component (with respect to the decomposition R

k = Tx(M)×Tx(M)⊥) of all the
vectors ẏ with the property that (ẋ, ẏ) ∈ T(x,y)(TM). The fact that M can be thought
as a regular level set of a smooth map has been used to prove that ν is well defined and
satisfies some properties that we summarize in the following result.

Theorem 3.2. Let M be a smooth manifold in R
k and define

T 2M = {(x;u, v) ∈ R
k × (Rk × R

k) : x ∈M ;u, v ∈ Tx(M)}.

Then there exists a unique smooth map ν : T 2M → R
k such that

1. ν(x;u, v) ∈ Tx(M)⊥ for all (x, u, v) ∈ T 2M ;

2. for any x ∈ M , the map ν(x; ·, ·) : Tx(M) × Tx(M) → Tx(M)⊥ is bilinear and
symmetric;
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3. (ẋ, ẏ) ∈ T(x,y)(TM) if and only if ẋ ∈ Tx(M) and the orthogonal projection of ẏ

onto Tx(M)⊥ coincides with ν(x; y, ẋ).

Exercise 3.2. Find the explicit expression of the map ν for the following cases;

S2 = {x ∈ R
3 : |x|2 = 1}; {(x1, x2) ∈ R

2 : x1 + x2 = 1}.

According to what we have shown above, any (non-autonomous) first order differen-
tial equation on TM can be written in the form

{

ẋ = g(t, x, y),
ẏ = ν(x; y, g(t, x, y)) + f(t, x, y), (t, x, y) ∈ R × TM,

(3.8)

where g, f : R × TM → R
k are continuous and such that g(t, x, y), f(t, x, y) ∈ Tx(M)

for all (t, x, y) ∈ R × TM .

We are now ready to introduce the concept of second order differential equation on a
smooth m-dimensional manifold M ⊆ R

k. We will see how this equation can be written
exactly in the same way as if M were an open subset of R

k.

When M is an open subset U of R
k one has TM = U × R

k, and a second order
differential equation in M is written in the form

ẍ = h(t, x, ẋ), (t, x, ẋ) ∈ R × TM. (3.9)

where h : R×TM → R
k is a continuous map. As pointed out before, the important fact

about an equation is what we mean by a solution. In this case a solution is a C2 map
x(·) : J → M , defined in a nontrivial interval J ⊆ R, such that ẍ(t) = h(t, x(t), ẋ(t)),
identically in J . Therefore if t 7→ x(t) is a solution of (3.9), the associated curve
t 7→ (x(t), y(t)), where y(t) = ẋ(t), lies in TM and satisfies the following first order
equation in TM :

{

ẋ = y,
ẏ = h(t, x, y), (t, x, y) ∈ R × TM.))

(3.10)

Writing (3.9) in this form allows us to adapt the well-known existence and uniqueness
results of first order differential equations (as well as the Kamke property of the maximal
solutions) to the context of second order equations on open subsets of Euclidean spaces.
For example, as regards the existence property, one obtains that given (τ, p, v) ∈ R×TM ,
(3.9) has a solution x(·), which is defined in an open interval J containing τ and satisfies
the initial conditions x(τ) = p and ẋ(τ) = v.

We point out that in the above considered case, i.e. when M is an open subset U of
R

k, no matter how the continuous map h of (3.9) is given, the (time dependent) vector
field G : R × TM → R

k × R
k, given by G(t, x, y) = (y, h(t, x, y)), is always tangent to

TM (which, in this case, is just the open subset U × R
k of R

k × R
k). Of course, this is

not so when M is a general submanifold of R
k. Consequently, if we want to apply the

classical results to the associated system (3.10), the mapping h : R × TM → R
k must
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be given in such a way that the map G defined above turns out to be a tangent vector
field on TM . This suggests the following definition of second order differential equation
on M .

Definition 3.1. Let M be a smooth differentiable submanifold of R
k and let h :

R × TM → R
k be a continuous map. An expression of the type

ẍ = h(t, x, ẋ), (t, x, ẋ) ∈ R × TM (3.11)

is called a (time dependent) second order differential equation on M , provided that the
associated vector field G : R × TM → R

k × R
k, given by G(t, x, y) = (y, h(t, x, y)), is

tangent to TM ( i.e. (y, h(t, x, y)) ∈ T(x,y)(TM) for all (t, x, y) ∈ R × TM). A solution

of (3.11) is a C2 curve x : J → R
k, defined on a (nontrivial) interval J ⊆ R, in such a

way that x(t) ∈M and ẍ(t) = h(t, x(t), ẋ(t)), identically on J .

With this definition of second order differential equation, one could consider a more
general situation than the case where M is a differentiable manifold. In fact, the above
definition makes sense even ifM is an arbitrary subset of R

k. However, in order to obtain
a meaningful situation, the subset M of R

k and the map h : R × TM → R
k should be

given in such a way that for any (τ, p) ∈ R×M and v ∈ Cp(M) one gets the existence of
(at least) a solution x : [τ, β) →M , defined on a right neighborhood of τ , satisfying the
Cauchy conditions x(τ) = p and ẋ(τ) = v. For interesting sufficient conditions which
ensure the existence and uniqueness of a solution of a Cauchy problem associated with
a first order differential equation on a set, we refer to the work of Nagumo [Na]. As far
as we know, general conditions on M and h which ensure that the associated system
(3.10) satisfies Nagumo’s assumptions have not been given so far.

Going back to the case when M is a smooth submanifold of R
k, it is important

to see how one can practically write down a second order differential equation on M .
Roughly speaking, we shall see how one can decompose the mapping h : R× TM → R

k

into a normal part, which depends only on the geometry of M , and a tangential part,
which can be arbitrarily assigned. As a physical interpretation, (3.11) represents the
motion equation of a constrained system, the manifold being the constraint. The normal
component of h is the reactive force and the tangential component is the active force.
When the tangential part of h is zero, the equation (3.11) is called inertial, and its
solutions are the geodesics of M .

The general form (3.8) of any (non-autonomous) first order differential equation on
TM helps us to write down any second order differential equation on M . In fact, let
ν : T 2M → R

k be as in Theorem 3.2 and define r : TM → R
k by r(x, y) = ν(x; y, y).

Clearly, r is smooth and, given x ∈M , y 7→ r(x, y) is a quadratic map from Tx(M) into
Tx(M)⊥. Therefore, from Theorem 3.2 we get that

ẍ = h(t, x, ẋ), (t, x, ẋ) ∈ R × TM

is a second order differential equation on M if and only if, for any (t, x, ẋ) ∈ R × TM ,
the orthogonal projection of h(t, x, ẋ) onto Tx(M)⊥ coincides with r(x, ẋ). Thus, any
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second order differential equation has the form

ẍ = r(x, ẋ) + f(t, x, ẋ), (t, x, ẋ) ∈ R × TM, (3.12)

where f : R × TM → R
k is an arbitrary continuous (time dependent, velocity depen-

dent) tangent vector field on M . That is, the active force f must satisfy the condition
f(t, x, ẋ) ∈ Tx(M) for all (t, x, ẋ) ∈ R × TM . When f is zero, the equation (3.12) is
called inertial and its solutions are the geodesics of M . When the active force has the
special form

f(t, x, ẋ) = −αẋ+ a(t, x),

where α > 0 is given, the expression −αẋ is the frictional force (α is the coefficient of
friction) and a(t, x) represents the applied force.

Exercise 3.3. Prove that if x : J → M is a geodesic of a smooth (or, more generally
C2) manifold M ⊆ R

k, then the map t 7→ |ẋ(t)|2 is constant.

Exercise 3.4. Prove that if M is an open subset of an affine subspace of R
k, then the

map r : TM → R
k is trivial.

Exercise 3.5. Find the explicit expression of r : TM → R
k for

M = Sk−1
a = {x ∈ R

k : |x| = a}.

As in the case where M is an open subset of R
k, a second order differential equation

onM can be equivalently written as a first order equation in TM . Actually, by definition,
ẋ = h(t, x, ẋ) is a second order equation on M if and only if the equivalent system

{

ẋ = y,
ẏ = h(t, x, y)

is a first order equation on TM . Writing the continuous map h : R × TM → R
k in the

form h(t, x, y) = r(x, y) + f(t, x, y), we get the general expression of a system on TM
which corresponds to a second order differential equation on M :

{

ẋ = y,
ẏ = r(x, y) + f(t, x, y),

where f : R × TM → R
k is an arbitrary continuous vector field such that f(t, x, y) ∈

Tx(M) for all (t, x, y) ∈ R × TM .

There is a different and more concise way of writing a second order differential
equation on a smooth manifold. By definition, any solution x : J → M of (3.12)
satisfies the condition

ẍ(t) = r(x(t), ẋ(t)) + f(t, x(t), ẋ(t))

for all t ∈ J . Given any t ∈ J , the second derivative ẍ(t) can be uniquely decomposed
into the sum of two components: a normal part ẍν(t) ∈ Tx(t)(M)⊥ and a parallel (or
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tangential) part ẍπ(t) ∈ Tx(t)(M). It is not difficult to prove (see Exercise 3.6 below)
that any C2 curve x : J →M satisfies the condition

ẍν(t) = r(x(t), ẋ(t)),

identically on J , no matter if it is a solution of (3.12) or not. Therefore, x : J → M is
a solution of (3.12) if and only if one has

ẍπ(t) = f(t, x(t), ẋ(t))

for all t ∈ J . That is, the tangential acceleration (called the covariant derivative of the
velocity) of any solution of (3.12) must equal the active force. Thus, the equation (3.12)
can be written in the form

ẍπ = f(t, x, ẋ), (t, x, ẋ) ∈ R × TM,

and the geodesics of M are the solutions of

ẍπ = 0. (3.13)

Exercise 3.6. Prove that any C2 curve x : J → M on a smooth manifold M ⊆ R
k

satisfies the condition ẍν(t) = r(x(t), ẋ(t)) for all t ∈ J , where ẍν(t) stands for the
orthogonal projection of the acceleration ẍ(t) onto the space Tx(t)(M)⊥.

Exercise 3.7. Prove that given (p, v) ∈ TM , the norm |r(p, v)| is the curvature (in
R

k) at the point p ∈ M of the geodesic x(·) satisfying the Cauchy conditions x(0) = p,
ẋ(0) = v. Prove that the center of curvature of such a geodesic lies in the half-line with
endpoint p and direction r(p, v).

Exercise 3.8. Prove that if (3.13) admits a nontrivial closed geodesic (i.e. a non-
constant periodic solution), then given T > 0, it admits T -periodic solutions x : R →M
with arbitrarily large speed |ẋ(t)|.

4. The degree of a tangent vector field

As in the previous section, for the sake of simplicity, all the differentiable manifolds
we shall consider are supposed to be smooth, unless otherwise specified. AssumeM ⊆ R

k

is such a manifold and let g : M → R
k be a continuous tangent vector field on M . If

g is admissible on M , i.e. if the set of its zeros is compact, then (see e.g. [GP], [Hi],
[Mi], [Tr] and references therein) one can assign to g an integer, deg(g,M), called the
degree (or index, or Euler characteristic, or rotation) of the tangent vector field g on
M . All the standard properties of the Brouwer degree of vector fields on open subsets
of Euclidean spaces, such as homotopy invariance, excision, additivity, existence, etc.,
are still valid in the more general context of differentiable manifolds.

To avoid any possible confusion, we point out that in the literature there exists a
different extension of the Brouwer degree to the context of differentiable manifolds (see
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e.g. [Mi] and references therein), called the Brouwer degree for maps on manifolds. This
second extension, roughly speaking, counts the (algebraic) number of solutions of an
equation of the form h(x) = y, where h : M → N is a map between oriented manifolds
of the same dimension and y ∈ N is such that h−1(y) is compact. This dichotomy of
notions in the context of manifolds arises from the fact that counting the solutions of an
equation of the form h(x) = y cannot be reduced to the problem of counting the zeros
of a vector field, as one can do in R

k by defining g(x) = h(x) − y. Therefore, from the
point of view of global analysis, the degree of a vector field and the degree of a map are
necessarily two separated notions. The first one, which we are interested in, does not
require any orientability and is particularly important for differential equations, since,
we recall, a tangent vector field on a manifold can be regarded as a differential equation.

We give here a brief idea of how this degree can be defined (for an equivalent definition
based on fixed point index theory see [FP1] ). We need first the following result (see
e.g. [Mi]).

Theorem 4.1. Let g : M → R
k be a C1 tangent vector field on a differentiable manifold

M ⊆ R
k. If g is zero at some point p ∈ M , then the derivative g′(p) : Tp(M) → R

k

maps Tp(M) into itself. Therefore, g′(p) can be regarded as an endomorphism of Tp(M)
and consequently its determinant det(g′(p)) is well defined.

Proof. It suffices to show that g′(p)v ∈ Tp(M) for any v ∈ Cp(M) such that |v| =
1. Given such a vector v, consider a sequence in M \ {p} such that pn → p and
(pn − p)/|pn − p| → v. By Lemma 1.1 we have

g′(p)v = lim
n→∞

g(pn) − g(p)

|pn − p|
= lim

n→∞

g(pn)

|pn − p|
.

Observe that for all n ∈ N, the vector wn = g(pn)/|pn −p| is tangent to M at pn. Let us
show that this implies that the limit w = g′(p)v of {wn} is in Tp(M). In fact, because of
Theorem 2.2, we may assume that M (around p) is a regular level set of a smooth map
f : U → R

s defined on some open subset U of R
k. Thus, by Theorem 2.1, f ′(pn)wn = 0,

and passing to the limit we get f ′(p)w = 0, which means w ∈ Tp(M), as claimed. �

Exercise 4.1. Let X be a subset of R
k with the property that the multivalued map

which assigns to any x ∈ X the compact set Tx(X)∩Sk−1 is upper semicontinuous (see
e.g. [AC]). Prove that if g : X → R

k is a C1 tangent vector field on X and p ∈ X is a
zero of g, then, as in Theorem 4.1, g′(p) maps Tp(X) into itself.

Let g : M → R
k be a C1 tangent vector field on a differentiable manifold M ⊆ R

k.
A zero p ∈M of g is said to be nondegenerate if g′(p), as a map from Tp(M) into itself,
is an isomorphism. In this case, its index, i(g, p), is defined to be 1 or −1 according to
the sign of the determinant det(g′(p)).

Exercise 4.2. Let f : X → R
s be a C1 map on a subset X of R

k and let p ∈ X be
such that f(p) = 0. Prove that if f ′(p) : Tp(X) → R

s is one to one, then p is an isolated
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zero of f . Use this fact to show that nondegenerate zeros of a tangent vector field on a
manifold are isolated.

Hint. Use Lemma 1.1 (or Lemma 1.2, taking the restriction of f to f−1(0)).

In the particular case when an admissible tangent vector field g : M → R
k is nonde-

generate (i.e. smooth, with only nondegenerate zeros), its degree, deg(g,M), is defined
just summing up the indices at its zeros. This makes sense, since g−1(0) is compact
(g being admissible) and discrete (as pointed out in Exercise 4.2). Therefore, the sum
if finite. Using transversality arguments (see e.g. [Hi]) one can show that if two such
tangent vector fields can be joined by a smooth homotopy, then they have the same
degree, provided that this homotopy is admissible (i.e. the set of zeros remains in a
compact subset of M). Moreover, it is clear that given g as above, if V is any open
subset of M containing g−1(0), then deg(g,M) = deg(g, V ).

The above “homotopy invariance property” gives an idea of how to proceed in the
general case. If g : M → R

k is any continuous admissible tangent vector field on M ,
consider any relatively compact open subset V of M containing the zeros of g and
observe that, since the boundary ∂V of V (in M) is compact, we have min{|g(x)| : x ∈
∂V } = δ > 0. Let g1 be any nondegenerate tangent vector field on V̄ such that

max{|g(x) − g1(x)| : x ∈ ∂V } < δ.

Then deg(g,M) is defined as deg(g1, V ). To see that this definition does not depend
on the approximating map, observe that if g2 is a different nondegenerate vector field
satisfying the same inequality, we get (1 − s)g1(x) + sg2(x) 6= 0 for all s ∈ [0, 1] and
x ∈ ∂V . Therefore (x, s) 7→ (1 − s)g1(x) + sg2(x) is an admissible homotopy of tangent
vector fields on V . This proves that deg(g1, V ) = deg(g2, V ). The fact that this definition
does not depend on the open set V containing g−1(0) is very easy to check and left to
the reader.

The following are the main properties of the degree for tangent vector fields on
manifolds.

Solution. If deg(g,M) 6= 0 then g has a zero on M .

Additivity. If V1 and V2 are open in M , V1 ∩ g
−1(0) and V2 ∩ g

−1(0) are compact, and
V1 ∩ V2 ∩ g

−1(0) is empty, then deg(g, V1 ∪ V2) = deg(g, V1) + deg(g, V2).

Homotopy invariance. If h : M × [0, 1] → R
k is a continuous admissible homotopy of

tangent vector fields, that is h(x, s) ∈ Tx(M) for all (x, s) ∈M × [0, 1] and h−1(0)
is compact, then deg(h(·, s),M) does not depend on s ∈ [0, 1].

The above definition of degree implies immediately that if two vector fields g1 :
M → R

k and g2 : N → R
s correspond under a diffeomorphism ϕ : M → N , then, if

one is admissible, so is the other one, and they have the same degree (on M and N
respectively). Moreover, if M is an open subset of R

k and g : M → R
k is admissible,
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then deg(g,M) is just the classical Brouwer degree at zero, deg(g, V, 0), of the restriction
of g to any bounded open subset V of M containing g−1(0) and such that V̄ ⊆M (see
e.g. [Ll]).

Exercise 4.3. Regarding the complex plane C as a real two dimensional manifold, prove
that the (topological) degree, deg(P,C), of any polynomial map P : C → C coincides
with its algebraic degree. This gives a proof of the fundamental theorem of algebra.

We observe that, as a consequence of the homotopy invariance property, the degree
of a tangent vector field on a compact manifold M ⊆ R

k does not depend on the vector
field. In fact, if g1 and g2 are two tangent vector fields on M , then h : M × [0, 1] → R

k,
given by h(x, s) = (1 − s)g1(x) + sg2(x), is an admissible homotopy. This implies that
to any compact manifold M one can assign an integer, χ(M), called the Euler-Poincaré
characteristic of M , by putting

χ(M) := deg(g,M),

where g : M → R
k is any tangent vector field on M . Clearly, if two compact manifolds

M and N are diffeomorphic, then χ(M) = χ(N). Moreover, if M is compact with
χ(M) 6= 0, then any tangent vector field on M must vanish at some point.

Exercise 4.4. Prove that χ(S2) = 2.

Hint. Consider the gradient of the map h : S2 → R, given by h(x, y, z) = z.

Exercise 4.5. Prove that χ(S1) = 0 by defining a nonvanishing tangent vector field on
S1.

Exercise 4.6. Compute χ(Sm) by considering the gradient of the real function h :
Sm → R, given by h(x1, x2, ...xm+1) = xm+1.

Exercise 4.7. Give an example of a (necessarily noncompact) manifold M with two
admissible vector fields g1 and g2 for which deg(g1,M) 6= deg(g2,M).

Exercise 4.8. Prove that if a tangent vector field g on an m-dimensional manifold M
is admissible, then −g is admissible and deg(−g,M) = (−1)m deg(g,M).

Exercise 4.9. Deduce from the previous exercise that if M is a compact odd dimen-
sional manifold, then χ(M) = 0.

So far we have considered only manifolds without boundary. An m-dimensional
differentiable manifold with boundary is just a subset X of R

k which is locally diffeo-
morphic to the open subsets of a closed half subspace of R

m. The boundary ∂X of X
coincides, by definition, with the set δX of singular points of X. The interior of X is
X \ ∂X. Observe that as a consequence of Theorem 1.3, ∂X is a boundaryless manifold
of dimension m − 1 and the tangent cone to X at a boundary point p is a closed half
subspace of the m-dimensional space Tp(X) ⊆ R

k. Moreover, ∂X is (relatively) closed in
X and the open subset X \∂X of X is a boundaryless m-dimensional manifold. Observe
also that any boundaryless manifold M (as defined in section 2) can be regarded as a
particular manifold with boundary (with the property ∂M = ∅).
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Assume now that X ⊆ R
k is a compact manifold with boundary. If g : X → R

k

is a tangent vector field on X which does not vanish on ∂X, then g is admissible
on M = X \ ∂X. In fact, g−1(0) is a compact subset of X contained in M . This
means that deg(g,M) is well defined. In this case we say that g is admissible on X
and we put deg(g,X) := deg(g,M). If, in particular, g is strictly outward along the
boundary, that is, −g(x) is in the (relative) interior of the half subspace Cx(X) of Tx(X)
for all x ∈ ∂X, then g is admissible and deg(g,X) is well defined. If g1 and g2 are two
tangent vector fields onX, both strictly outward along the boundary, then the homotopy
h(x, s) = (1 − s)g1(x) + sg2(x) does not vanish on ∂X. Therefore, h−1(0) is a compact
subset of (X \ ∂X) × [0, 1], and this implies deg(g1, X) = deg(g2, X). Hence, it makes
sense to define the Euler-Poincaré characteristic χ(X) of a manifold X with boundary,
by considering the common degree of all tangent vector fields on X pointing outward
along ∂X. This extends the previous definition for boundaryless manifolds.

Actually, there are other equivalent (and better) ways to define the Euler-Poincaré
characteristic of a compact manifold with boundary. One of these is via homology theory
(see for example [Sp]). The powerful homological method has the advantage that can be
applied to a large class of topological spaces, which includes those of the same homotopy
type as compact polyhedra (such as compact manifolds with boundary). The celebrated
Poincaré-Hopf theorem asserts that

“the definition of the Euler-Poincaré characteristic considered
above coincides with the homological one”.

Exercise 4.10. Prove that the Euler-Poincaré characteristic of the k-dimensional disk
Dk = {x ∈ R

k : |x| ≤ 1} is one.

5. Forced oscillations on manifolds and bifurcation

This last section is devoted to the problem concerning the existence of forced oscil-
lations of a periodically excited constrained mechanical system. The system is repre-
sented by a second order differential equation on a manifold M (the constraint) which
throughout this section will be assumed to be smooth, boundaryless, m-dimensional and
embedded in R

k. The proofs of most of the results are too long to be included here.

Consider the following second order, time dependent differential equation on M :

ẍ = r(x, ẋ) + f(t, x, ẋ), (t, x, ẋ) ∈ R × TM, (5.1)

where the forcing term f : R×TM → R
k is a continuous T -periodic tangent vector field

on M . That is, f satisfies the condition

f(t+ T, x, ẋ) = f(t, x, ẋ) ∈ Tx(M),

for all (t, x, ẋ) ∈ R × TM . This represents the motion equation of a constrained me-
chanical system acted on by a T -periodic “generalized” force f , which, without loss of
generality, can be assumed to be tangent to the constraint M (any normal component



32 Massimo Furi

of a force is neutralized by the constraint). We are interested in conditions on the
constraint M and on the force f which ensure the existence of forced (or harmonic)
oscillations of (5.1); i.e. periodic solutions of the same period as that of the forcing term
f .

To study this problem, it is convenient to embed (5.1) in a one parameter family of
second order differential equations in the following way:

ẍ = r(x, ẋ) + λf(t, x, ẋ), (t, x, ẋ) ∈ R × TM, λ ≥ 0. (5.2)

Thus, (5.2) becomes (5.1) when λ = 1 and reduces to the inertial equation for λ = 0. An
appropriate space to look for solutions of (5.2) is the Cartesian product [0,∞)×C1

T (M),
consisting of all the pairs (λ, x(·)), with λ ≥ 0 and x : R → M a T -periodic C1 map.
This is obviously a metric space, since C1

T (M) is a subset of the Banach space C1
T (Rk)

of the C1 T -periodic maps x : R → R
k, with the standard norm

‖x‖ = sup{|x(t)| : t ∈ R} + sup{|ẋ(t)| : t ∈ R}.

However, [0,∞)×C1
T (M) need not be complete. To see this, think of the most significant

and simple example of differentiable manifold: an open subset of R
k (different from R

k).

Exercise 5.1. Prove that C1
T (M) is complete if and only if M is closed in R

k.

Exercise 5.2. Use the preceding exercise (and the fact that any differentiable manifold
is locally compact) to show that C1

T (M) is locally complete.

An element (λ, x) ∈ [0,∞) × C1
T (M) will be called a solution pair of (5.2) provided

that x(·) is a (clearly T -periodic) solution of the differential equation (5.2). Denote by
X the subset of [0,∞) × C1

T (M) of all the solution pairs of (5.2), and observe that the
points of M are in a one-to-one correspondence with the solution pairs of the type (0, x),
where x : R → M is a constant map. Therefore, in the sequel, the manifold M will be
identified with these elements, called the trivial solution pairs of (5.2). This simplifies
some notation. For example if W is a subset of [0,∞) × C1

T (M), M ∩W stands for
the subset of M consisting of those points p ∈ M such that (0, p̄) ∈ W , where p̄ is the
constant map t 7→ p. A neighborhood of a point p ∈ M in the space [0,∞) × C1

T (M)
is actually a neighborhood of (0, p̄). According to this identification and terminology,
the elements of the subset X \ M of [0,∞) × C1

T (M) are regarded as the nontrivial
solution pairs of (5.2). We observe that there may exist nontrivial solution pairs even
for λ = 0. This happens when (and only when) the inertial equation admits nontrivial
closed geodesics, as in the case of the inertial motion of a mass point constrained in a
circle or in a sphere.

Exercise 5.3. Prove that the set X of solution pairs of (5.2) is closed in [0,∞)×C1
T (M).

Exercise 5.4. Prove that M may be regarded as a closed subset of [0,∞) × C1
T (M).

Exercise 5.5. Using Ascoli’s theorem prove that any bounded subset of X is precom-
pact (i.e. it has compact completion or, equivalently, is totally bounded).
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Exercise 5.6. Use the above exercise and the fact that X is closed in the locally
complete space [0,∞) × C1

T (M) to show that X is locally compact.

An element p of M is called a bifurcation point (of forced oscillations) for (5.2) if
any neighborhood of p in [0,∞)×C1

T (M) contains a nontrivial solution (pair). In spite
of the fact that one may have nontrivial solutions for λ = 0, any bifurcation point must
be an accumulation point of solution pairs having λ > 0. The reason of this is a well-
known result in Riemannian geometry: there are no (nontrivial) closed geodesics in a
convenient neighborhood of a point.

The following is a necessary condition for a point p ∈ M to be of bifurcation (see
[FP4]).

Theorem 5.1. Let M be a boundaryless m-dimensional smooth manifold in R
k and

let f : R × TM → R
k be a T -periodic continuous active force on M . If p ∈ M is a

bifurcation point (of forced oscillations) for the parametrized second order equation

ẍ = r(x, ẋ) + λf(t, x, ẋ), (t, x, ẋ) ∈ R × TM, λ ≥ 0.

then the average force vanishes at p. That is

f̄(p) =
1

T

∫ T

0
f(t, p, 0)dt = 0.

Observe that Theorem 5.1 is trivial when the reactive force r : TM → R
k is iden-

tically zero (the flat case). In fact, let {(λn, xn)} be a sequence of nontrivial solution
pairs such that λn → 0, xn(t) → p uniformly and ẋn(t) → 0 uniformly. Integrating from
0 to T both members of the equalities

ẍn(t) = λnf(t, xn(t), ẋn(t)), n ∈ N, t ∈ R,

we get
∫ T

0
f(t, xn(t), ẋn(t))dt = 0,

and the assertion in the flat case is obtained passing to the limit.

The following global result of [FP2] provides a sufficient condition for bifurcation.

Theorem 5.2. Assume that the constraint M is compact with nonzero Euler-Poincaré
characteristic. Then (5.2) admits an unbounded connected set Σ of nontrivial solution
pairs whose closure in [0,∞) × C1

T (M) contains a bifurcation point.

As a consequence of the above theorem, we get the following perturbation result:

If M is compact and χ(M) 6= 0, then (5.2) admits T -periodic
solutions for λ > 0 sufficiently small.
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In fact, the unbounded branch Σ, being connected, cannot be entirely contained in
the “inertial” slice {0} × C1

T (M); otherwise one would have an accumulation point of
nontrivial closed geodesics (and this, as pointed out before, is impossible). As far as we
know, this perturbation result was proved for the first time by Benci and Degiovanni in
[BD], with completely different methods.

Observe that the condition χ(M) 6= 0 is necessary for the existence of a bifurcation
point for any T -periodic forcing term. It is known, in fact, that, if χ(M) = 0, there
exists an autonomous, nonvanishing, tangent vector field f on M . Thus, f can be
interpreted as a T -periodic force coinciding with its average, and the necessary condition
for bifurcation of Theorem 5.1 is not satisfied.

The question is if, under the assumption that M is compact with χ(M) 6= 0, (5.1)
has a forced oscillation, at least in the case when f is independent of the velocity (or,
more generally, bounded). We do not yet know the answer to this problem, even though
we are incline to believe that it is affirmative.

An interesting result related to this conjecture has been obtained by Benci in [Be],
where he proved the existence of infinitely many forced oscillations for a system whose
constraint M is a smooth manifold with finite fundamental group (as in the case of Sm),
provided that the force admits a time periodic Lagrangian satisfying certain physically
reasonable assumptions.

Positive partial answers to the above conjecture have been obtained in [FP3] for
M = S2 (the spherical pendulum) and in [FP5] for M = S2n. In both cases, the applied
force is assumed to be independent of the velocity. The crucial tool to get these results
is Theorem 5.2 above, which ensures the existence of an unbounded connected set Σ
of nontrivial solution pairs (recall that χ(S2n) = 2). Therefore, if (5.1) does not admit
forced oscillations, then Σ must be contained in [0, 1) × C1

T (S2n), and this was shown
to be impossible if the applied force f does not depend on the velocity. Actually (see
[FP3] and [FP5] ), with this assumption on f , in spite of the fact that the set of closed
geodesics of S2n is unbounded (with the C1 norm), any connected set of solution pairs
contained in [0, 1) × C1

T (S2n) must be bounded. The technique to get these estimates
is based upon the existence of a convenient, continuous, integer valued function (the
rotation index with respect to the origin) defined on a suitable class of T -periodic C1

curves on S2n. The idea is similar to the one previously used by Capietto, Mawhin and
Zanolin in [CMZ1] to get solutions of a superlinear periodic boundary value problem in
R

k.

Theorem 5.2 above gives a sufficient condition for the existence of bifurcation points
of the equation (5.2). However, because of the compactness assumption on M , this
condition cannot be applied to the most common situation: the flat case. Moreover,
since (according to Theorem 5.1) a bifurcation point of (5.2) is a zero of the average
force f̄ , it is natural to ask when a zero p ∈M of f̄ is actually a bifurcation point. On
the other hand, the above sufficient condition does not answer this question: it cannot
be applied to a small neighborhood of a point p in M . This justifies the interest of
the following extension of Theorem 5.2 (see [FP4]), which includes the cases when M
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is an open subset of R
k or an open neighborhood of a point p in M . We recall first

that an autonomous tangent vector field f̄ on a differentiable manifold M is said to be
admissible on an open subset V of M if f̄−1(0) ∩ V is compact (see section 4). In this
case the degree, deg(f̄ , V ), is well defined.

Theorem 5.3. Let M be a boundaryless smooth manifold in R
k and let f : R×TM → R

k

be a T -periodic continuous active force on M . Denote by f̄ : M → R
k the autonomous

tangent vector field

f̄(p) =
1

T

∫ T

0
f(t, p, 0)dt.

Let V be an open subset of M and assume that the degree deg(f̄ , V ) of f̄ on V is defined
and nonzero. Then the parametrized second order differential equation

ẍ = r(x, ẋ) + λf(t, x, ẋ), (t, x, ẋ) ∈ R × TM, λ ≥ 0,

admits a connected set Σ of nontrivial solution pairs, whose closure (in [0,∞)×C1
T (M))

meets V (at some bifurcation point) and has (at least) one of the following three prop-
erties:

1. it is unbounded;

2. it is not complete;

3. it contains a bifurcation point in M \ V .

Observe that in the above result, if the manifold M is a closed subset of R
k, then

the second alternative cannot occur, since, in this case, [0,∞) × C1
T (M) is a complete

metric space. Thus, choosing V = M , if deg(f̄ ,M) is defined and nonzero, then the
branch Σ must be unbounded. This is, in fact, the situation of Theorem 5.2, where M
is compact and deg(f̄ ,M) = χ(M) 6= 0.

Assume now that p ∈ M is an isolated zero for the average force f̄ and let V ⊆ M
be an open neighborhood of p. By the excision property of the degree, deg(f̄ , V ) does
not depend on V , provided that V ∩ f̄−1(0) = {p}. This shared integer is called the
index of f̄ at the isolated zero p and denoted by i(f̄ , p). This clearly extends to the
continuous case the notion of index of a C1 tangent vector field at a nondegenerate zero
(introduced in section 4). Observe, in fact, that if the force f is C1 and p ∈ M is a
nondegenerate zero of f̄ , then p is an isolated zero of f̄ and i(f̄ , p) = ±1 according to
whether the derivative f̄ ′(p) : Tp(M) → Tp(M) preserves or inverts the orientation of
Tp(M).

Using the notion of index at an isolated zero, we have as a direct consequence of
Theorem 5.3 the following sufficient condition for a given p ∈ M to be a bifurcation
point of (5.2).

Corollary 5.1. Let M and f be as in Theorem 5.3. Assume that p ∈ M is an
isolated zero of the average force f̄ . If i(f̄ , p) 6= 0, then p is a bifurcation point of
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forced oscillations for (5.3). In particular this holds when f is C1 and the derivative
f̄ ′(p) : Tp(M) → Tp(M) is one-to-one.

As pointed out in section 3 any second order differential equation on a differentiable
manifold M ⊆ R

k can be regarded as a first order differential equation on the tangent
bundle TM ⊆ R

k × R
k. On the other hand, any differential equation on TM can be

extended to a differential equation on an open subset U of R
k × R

k containing TM .
Thus, the equation (5.2) can be written in the form

ż = g(z) + λh(t, z), (t, z) ∈ R × U, (5.3)

where g(z) + λh(t, z) ∈ Tz(TM), whenever z ∈ TM . Since h(t, z) ≡ h(t + T, z), this
equation can be regarded as a T -periodic perturbation of a first order autonomous
differential equation in R

2k.

A very interesting continuation principle for equations of the above form (and not
necessarily related to second order equations) is given in [CMZ2], where the existence
of a bifurcating branch of solution pairs (λ, z) is ensured, provided that the Brouwer
topological degree of g is well defined and nonzero (no assumptions on the perturbation
h are needed for the existence of such a branch).

What seems peculiar to us, and interesting for further investigations, is the fact that
in Theorem 5.3 is just the role of the periodic perturbation h (or, equivalently, of the
applied force f ) which is important for the existence of a bifurcating branch. The
map g does not satisfy any assumptions, except that the vector field g : U → R

k × R
k

must be tangent to TM for any z in the subset TM of U . Actually, in the situation of
Theorem 5.3, the vector field g need not be admissible (from the point of view of the
degree theory). In fact, in this case, g−1(0) coincides with the trivial section M × {0}
of TM , which need not be compact (observe, in fact, that M can be an open subset of
R

k).

Partial results regarding the periodically perturbed equation (5.3) have been recently
obtained by P. Morassi in [Mo], where the subset g−1(0) of W is assumed to be a
differentiable manifold; even though, in his case, (5.3) is not necessarily associated with
a second order differential equation.
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