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Abstract. We investigate the set of harmonic solutions of Carathéodory T -
periodic perturbations of autonomous ODE’s on a differentiable manifold M

embedded in some R
k. More precisely, we consider the parametrized differen-

tial equation ẋ = g(x) + λf(t, x), λ ≥ 0, where g and f are two vector fields
tangent to M ⊂ R

k, with g continuous and f Carathéodory, T -periodic in t.
We prove the existence of a non-compact connected set of pairs (λ, x), where
λ ≥ 0 and x : R → M is a non-constant Carathéodory solution of the equa-
tion, emanating from the set g−1(0). This leads to a continuation principle
and a multiplicity result for a pendulum like equation.

1. Introduction

This paper, which is inspired by [6], is devoted to extending the results of [8] to
the case of Carathéodory perturbations of autonomous vector fields.

Let M be a (not necessarily closed) boundaryless differentiable manifold embed-
ded in Rk. Consider the following parametrized first order ordinary differential
equation:

(1) ẋ = g(x) + λf(t, x) , λ ≥ 0 ,

where g : M → Rk and f : R×M → Rk are tangent vector fields, g is continuous,
and f is Carathéodory and T -periodic in the first variable. We investigate the set
X of the T -pairs of (1); i.e. of the pairs (λ, x), where λ ≥ 0 and x : R → M is
an absolutely continuous T -periodic function such that ẋ(t) = g (x(t))+λf (t, x(t))
a.e. in R. Endowing X with a natural topology, we will obtain (Theorem 3.1 below)
some conditions ensuring the existence of a non-compact connected component of
the set of nontrivial T -pairs (i.e. not of the type (0, x) with x constant) of (1), which
emanates from the set of the rest points of the unperturbed equation

(2) ẋ = g(x) .

In a particular case, when M is closed in Rk, and deg(g, M) is well defined and
non-zero, this set will turn out to be unbounded.

As applications we get a continuation principle and a generalization of a result
from [8] on the multiplicity of forced oscillations of pendulum-type equations.

Some earlier results in this direction may be found in [1] where, under the weaker
assertion that the set Y of T -periodic solutions of the unperturbed equation (2) is
compact, it is proved (for the case of continuous perturbations) the existence of a
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non-compact connected component of X , emanating from Y . For the results related
to the continuation principles see also [2] and [9].

2. The set of T -pairs

Let M be a (not necessarily closed) boundaryless differentiable manifold embed-
ded in Rk endowed with the standard Euclidean norm |·|. Given p ∈ M , TpM
denotes the tangent space to M at p (which is a subspace of Rk). We will say
that f : R×M → Rk is a T -periodic Carathéodory tangent vector field on M if it
satisfies the following requirements:

(C1) for each p ∈ M , the map t 7→ f(t, p) is Lebesgue measurable on R;
(C2) for a.a. t ∈ R, the map p 7→ f(t, p) is continuous on M ;
(C3) for any compact set K ⊂ M , there exists a function γK ∈ L1

T (R) such that
|f(t, p)| ≤ γK(t) for a.a. t ∈ R and all p ∈ K, here L1

T (R) denotes the
space of L1

loc, T -periodic maps x : R → R;
(C4) for any p ∈ M , f(t + T, p) = f(t, p) ∈ TpM a.e. in R.

Conditions (C1) – (C3) are the so-called Carathéodory type assumptions while (C4)
says that f is a time-dependent T -periodic tangent vector field on M .

We will consider the following parametrized differential equation

(3) ẋ = g(x) + λf(t, x) ,

where λ is a non-negative real parameter, g : M → Rk is a continuous tangent
vector field and f is as above. We investigate the structure of the set X of T -pairs,
i.e. of the pairs (λ, x) with λ ≥ 0 and x a T -periodic solution of (3) corresponding
to λ.

Since any solution of (3) is continuous, the set X will be considered a metric
subspace of [0,∞) × CT (M), where CT (M) is the metric subspace of the Banach
space CT (Rk) of all the T -periodic continuous maps x : R → M , with norm
‖·‖ given by ‖x‖ = maxt∈R |x(t)|. The reason for this choice of the environment
space is that X turns out to be closed in [0,∞) × CT (M) (see below). As shown
by an interesting example in [6], this would not be true if X was thought as a
subspace of [0,∞) × L1

T (M) (which might appear as the most natural choice for
the Carathéodory setting); here L1

T (M) denotes the subspace of the Banach space
L1

T (Rk) ∼= L1
(

(0, T ),Rk
)

of the L1
loc, T -periodic maps x : R → M . However,

by the same method of [6], it is possible to show that both [0,∞) × CT (M) and
[0,∞) × L1

T (M) induce the same topology on X .

To see that the space X of T -pairs is closed in [0,∞) × CT (M), consider a
sequence {(λn, xn)}n∈N

in X converging to (λ0, x0) ∈ [0,∞) × CT (M). One has,
for any t ∈ R,

xn(t) = xn(0) +

∫ t

0

[

g (xn(s)) + λnf (s, xn(s))
]

ds.

Since xn converges uniformly to x0, there exists a compact subset K of M which
contains the image of xn for any n ∈ N. The assumption (C3) and the dominated
convergence theorem yield (λ0, x0) ∈ X .

Observe that CT (M) is not complete unless M is complete (i.e. closed in Rk).
Nevertheless, since M is locally compact, CT (M) is always locally complete. As
a consequence, X , being a closed subset of a locally complete space, is locally
complete as well.
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We will make use of the following version of Ascoli’s theorem.

Theorem 2.1. Let Y be a subset of Rk and B a bounded equicontinuous subset
of C ([a, b] , Y ). Then B is totally bounded in C ([a, b] , Y ). In particular, if Y is
closed, B is relatively compact.

As a consequence, we have the following important property of the set X of all
the T -pairs of (3).

Lemma 2.2. Let M be a closed manifold in Rk. Then any bounded subset of X
is actually totally bounded. As a consequence, closed and bounded sets of T -pairs
are compact.

Proof. Since M is complete, given A ⊂ X bounded, the set

{(λ, x(t)) ∈ [0,∞) × M : (λ, x) ∈ A, t ∈ [0, T ]}

is contained in a compact set K. Hence, there exists a L1
T function γ such that

|ẋ(t)| = |g(y) + λf(t, y)| ≤ γ(t) for a.a. t ∈ [0, T ] and all (λ, y) ∈ K. Thus A
can be regarded as an equibounded set of equicontinuous functions from [0, T ] into
[0,∞) × M . Ascoli theorem implies that A is totally bounded.

If A is assumed to be closed in X then, [0,∞) × CT (M) being complete, A is
complete and therefore compact.

Even when M is not complete, the proof of the above lemma shows that

Remark 2.3. The space X is always locally totally bounded. Thus, being locally
complete, X is actually locally compact.

3. The main result

Before stating our main result, let us recall some basic facts and definitions. Let
U be an open subset of a (boundaryless) differentiable manifold M ⊂ Rk, and
v : M → Rk be a continuous tangent vector field such that the set v−1(0) ∩ U
is compact. Then, one can associate to the pair (v, U) an integer, which we will
call degree of the vector field v in U and denote by deg(v, U) (often called also
Euler characteristic or Hopf index or rotation), which, roughly speaking, counts
(algebraically) the number of zeros of v in U (see e.g. [10], and references therein).

In the flat case, namely if U is an open subset of Rk, deg(v, U) is just the Brouwer
degree (with respect to zero) of v in U (i.e. in any bounded open set V containing
v−1(0) and such that V̄ ⊂ U). Using the equivalent definition of degree given in [4],
one can see that all the standard properties of the Brouwer degree on open subsets
of Euclidean spaces, such as homotopy invariance, excision, additivity, existence,
etc., are still valid in the more general context of differentiable manifolds.

In order to avoid formal complication in our statements, we will identify every
space with its image in the following diagram of closed embeddings

(4)
[0,∞) × M −→ [0,∞) × CT (M)

↑ ↑
M −→ CT (M) .

Where, the orizzontal arrows are defined by p 7→ p̂ and (λ, p) 7→ (λ, p̂), with p̂(t) ≡ p;
the vertical arrows by p 7→ (0, p) and, analogously, x 7→ (0, x).

According to these identifications, if Z is a subset of [0,∞)×CT (M), by Z ∩M
we mean the subset of M given by all p ∈ M such that the pair (0, p̂) belongs to Z.
If Y is a subset of [0,∞)×M , then Y ∩M represents the set {p ∈ M : (0, p) ∈ U}.
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Notice that if Z is open in [0,∞)×CT (M) then Z ∩M turns out to be open in M ;
analogously, if Y is open then Y ∩ M is open as well.

Recall that a pair (λ, x) ∈ [0,∞)×CT (M) is a T -pair if x is a T -periodic solution
of (3) corresponding to λ. Within the set X of the T -pairs of (3) we distinguish
the set of trivial T -pairs, that is of those T -pairs (0, x) with x constant. By the
above diagram of embeddings, we regard g−1(0) ⊂ M as the set of trivial T -pairs
and X \ g−1(0) stands for the set of nontrivial T -pairs.

Theorem 3.1 below is the main result of this paper; it is a generalization of Theo-
rem 3.3 of [8] to the case of Carathéodory periodic perturbations of an autonomous
vector field.

Theorem 3.1. Let f : R × M → Rk and g : M → Rk be tangent vector fields
defined on a (boundaryless) differentiable manifold M ⊂ Rk. Assume f satisfies
(C1) – (C4), and g is continuous. Let Ω be an open subset of [0,∞) × CT (M),
and assume that deg(g, Ω ∩ M) is well defined and nonzero. Then, Ω contains a
connected set Γ of nontrivial T -pairs for (3) whose closure in [0,∞)×CT (M) meets
g−1(0) ∩ Ω and is not contained in any compact subset of Ω. Moreover, if M is
closed in Rk, then Γ cannot be contained in a bounded complete subset of Ω. In
particular, if Ω = [0,∞) × CT (M), then Γ is unbounded.

In order to prove Theorem 3.1, some preliminary results are needed.

A pair (λ, p) ∈ [0,∞) × M is a starting point (for T -periodic solutions) if the
Cauchy problem

(5)

{

ẋ = g(x) + λf(t, x)
x(0) = p

admits a T -periodic solution. A starting point (λ, p) is called trivial if λ = 0 and
p ∈ g−1(0). The set of all the starting points will be denoted by S. With the
inclusions in diagram (4), g−1(0) can be regarded as the set of trivial T -pairs, and
S \ g−1(0) stands for the set S \

[

{0} × g−1(0)
]

of nontrivial starting points of (3).

It is well known (see e.g. [3]) that, if g is C1 and f is assumed to satisfy (C1) –
(C4), then the Cauchy problem (5) admits a unique (local) solution for any p ∈ M ,
provided that the following assumption is satisfied:

(C5) for each compact subset K of M , there exists a L1
T function αK such that

|f(t, p1) − f(t, p2)| ≤ αK(t) |p2 − p1| ,

for a.a. t ∈ R and for any p1, p2 ∈ K.

Moreover, under the assumptions (C1) – (C5), the set D ⊂ [0,∞) × M of all the
pairs (λ, p) such that the solution of (5) is defined in [0, T ] is open, thus locally
compact. Obviously the set S of all the starting points of (3) is a closed subset of
D, even if it could be not so in [0,∞)×M . This implies that S is locally compact.
If U is an open subset of D, the set S ∩ U is open in S, thus it is locally compact
as well.

Theorem 3.2. Let M , g, f , S and D be as above. If U is an open subset of D
such that deg(g, U ∩ M) is well defined and nonzero, then (S ∩ U) \ g−1(0) admits
a connected subset whose closure in U meets g−1(0) and is not compact.

Proof. It follows the outline of the proof of Theorem 3.1 in [7] which was given
for the special case of C1 tangent vector fields.
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It is important to notice that, in the Carathéodory setting, the property (C5) is,
in some sense, generic. More precisely:

Remark 3.3. Assume f satisfies (C1) – (C4), then there exists a sequence {fn}
of equi-Carathéodory T -periodic tangent vector fields satisfying (C5) such that if
pn → p0 then, for a.a. t ∈ R, fn(t, pn) → f(t, p0). Namely (compare [6]):

fn(t, p) = πp

(
∫

M

ϕn(p, q)f(t, q) dq

)

,

where πp : Rk → TpM is the orthogonal projection and ϕn : M × M → R is a
smooth function such that:

(1) ϕ(p, q) ≥ 0 for (p, q) ∈ M × M ;
(2) ϕ(p, q) = 0 whenever |p − q| > 1/n;
(3)

∫

M
ϕn(p, q) dq = 1 for any p ∈ M .

The last preliminary result that is needed for the proof of Theorem 3.1 is the
following global connectivity result of [5].

Lemma 3.4. Let Y be a locally compact Hausdorff space and let Y0 be a compact
subset of Y . Assume that no open compact subset of Y contains Y0. Then Y \Y0

contains a not relatively compact component whose closure intersects Y0.

Proof of Theorem 3.1. Let X denote the set of T -pairs of (3). Since X is closed,
it is enough to show that Ω contains a connected set Γ of nontrivial T -pairs whose
closure in X ∩ Ω meets g−1(0) and is not compact.

Assume first that g is C1 and f satisfies (C5) in addition to (C1) – (C4). Denote

by S the set of all starting points of (3), and let S̃ denote the set of the starting
points (λ, p) such that the pair (λ, x), with x solution of (5), is contained in Ω.

Obviously S̃ is an open subset of S, thus we can find an open subset U of D such
that S ∩U = S̃ (recall that D is the set of all the pairs (λ, p) such that the solution
of (5) is defined in [0, T ]). We have that

g−1(0) ∩ Ω = g−1(0) ∩ S̃ = g−1(0) ∩ U,

thus deg(g, U ∩ M) = deg(g, Ω ∩ M) 6= 0. Applying Theorem 3.2, we get the
existence of a connected set Σ ⊂ (S ∩ U) \ g−1(0) whose closure in U is not compact
and meets g−1(0). Let h : X → S be the map which assigns to any T -pair (λ, x) the
starting point (λ, x(0)). Observe that h is continuous, onto and, by the assumptions
on f and g, it is also one to one. Furthermore, by the continuous dependence
on initial data, we get the continuity of h−1 : S → X . Thus h maps X ∩ Ω
homeomorphically onto S ∩ U , and the trivial T -pairs correspond to the trivial
starting points under this homeomorphism. This implies that Γ =h−1 (Σ) satisfies
the requirements.

Let us remove the additional assumptions on g and f . Take Y0 = g−1(0)∩Ω and
Y = X ∩ Ω. We have only to prove that the pair (Y, Y0) satisfies the hypothesis of
Lemma 3.4. Assume the contrary. We can find a relatively open compact subset
C of Y containing Y0. Thus there exists an open subset W of Ω with closure W
contained in Ω and such that W ∩ Y = C, ∂W ∩ Y = ∅. Since C is compact and
[0,∞) × M is locally compact, we can choose W in such a way that the set

{(λ , x(t)) ∈ [0,∞) × M : (λ, x) ∈ W, t ∈ [0, T ]}

is contained in a compact subset K of [0,∞)×M . This implies that W is bounded
with complete closure in Ω and W ∩M is a relatively compact subset of Ω∩M . In
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particular g is nonzero on the boundary of W ∩M (relative to M). By well known
approximation results on manifolds, we can find a sequence {gi} of smooth tangent
vector fields uniformly approximating g. For i ∈ N large enough, we get

deg(gi, W ∩ M) = deg(g, W ∩ M).

Furthermore, by excision,

deg(g, W ∩ M) = deg(g, Ω ∩ M),

deg(gi, Ω ∩ M) = deg(gi, W ∩ M).

Hence deg(gi, Ω ∩ M) 6= 0. Therefore, given i large enough, the first part of the
proof can be applied to the equation

(6) ẋ = gi(x) + λfi(t, x),

where {fi} is a sequence of equi-Carathéodory T -periodic tangent vector fields as
in Remark 3.3.

Let Xi denote the set of T -pairs of (6). There exists a connected subset Γi of
Ω ∩ Xi whose closure in Ω meets g−1

i (0) ∩ W and is not contained in any compact
subset of Ω. Since W is bounded with complete closure, as in the proof of Lemma 2.2
Xi∩W is compact. Thus, for i large enough, there exists a T -pair (λi, xi) ∈ Γi∩∂W
of (6). Therefore, since for any i ∈ N and t ∈ R the pair (λi, xi(t)) belongs to the
compact subset K of [0,∞)×M introduced above, there exists a function γ ∈ L1

T (R)
such that

|ẋi(t)| = |gi (xi(t)) + λifi (t, xi(t))| ≤ γ(t) for a.a. t ∈ R and all i ∈ N.

As a consequence, the sequence {xi} is equicontinuous and by Ascoli’s theorem
we may assume that xi → x0 in CT (M). Moreover, without loss of generality,
λi → λ0 and, consequently, (λ0, x0) ∈ ∂W . Thus, by the assumptions on the
sequences {gi} and {fi}, for a.a. t ∈ [0, T ] we have gi (xi(t)) → g (x0(t)) and
fi (t, xi(t)) → f (t, x0(t)); therefore, by the dominated convergence theorem,

x0(t) = x0(0) +

∫ t

0

[

g (x0(s)) + λ0f (s, x0(s))
]

ds .

In other words (λ0, x0) is a T -pair in ∂W . This contradicts the assumption ∂W ∩
Y = ∅.

It remains to prove the last assertion. Let M be closed and let Γ ⊂ Ω be the
connected set of nontrivial T -pairs obtained above. Assume, by contradiction, Γ
contained in a bounded and complete subset H of Ω. In this case, it is easily verified
that also the closure Γ̄ of Γ in [0,∞)×CT (M) is contained in H . Thus, being closed
and bounded, Γ̄ is compact by Lemma 2.2; a contradiction.

Consider, for example, the case when M = Rk. If g−1(0) is compact and
deg(g, M) 6= 0, then there exists an unbounded connected set Γ of T -pairs of (3) in
[0,∞) × CT (M) which meets g−1(0). By Theorem 3.3 in [8] the existence of this
unbounded branch cannot be destroyed by the choice of a continuous f . Theorem
3.1 above implies that even the choice of a Carathéodory tangent vector field f
cannot affect the existence of Γ. However, as shown by simple examples, Γ may be
contained in the slice {0} × CT (M).
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4. Applications

Most of the following results are related to (and inspired by) those of section 3
in [6] which are valid in the case when g = 0.

When the manifold M is closed in Rk, from Theorem 3.1 we deduce the following
“geometric” feature of the set of T -pairs of (3).

Theorem 4.1. Let M , g and f be as in Theorem 3.1 and assume in addition M
is closed in Rk. Let U be an open subset of M . If deg (g, U) is well defined and
nonzero, then (3) admits a connected set Γ of nontrivial T -pairs whose closure Γ
meets U ∩ g−1(0) and satisfies at least one of the following properties:

(1) Γ is unbounded;
(2) Γ meets g−1(0) outside U .

In particular, if g−1(0) ⊂ U , then (1) holds.

Proof. Define Ω = ([0,∞) × CT (M))\
(

g−1(0) \ U
)

. Since Ω∩g−1(0) = U∩g−1(0),
by the excision property of the degree,

deg(g, Ω ∩ M) = deg(g, U) 6= 0 .

Thus, by Theorem 3.1 there exists a connected set of nontrivial T -pairs whose
closure Γ̄ in [0,∞) × CT (M) is not contained in a compact subset of Ω.

Assume that Γ̄ ∩
(

g−1(0) \ U
)

= ∅. In this case Γ̄ ⊂ Ω. Since M is assumed

closed, by Lemma 2.2, Γ̄ cannot be both bounded and complete. On the other hand
Γ̄, being a closed subset of the complete metric space [0,∞)×CT (M), is complete
as well. Hence Γ̄ must be unbounded.

Corollary 4.2. Let M be a compact boundaryless manifold with χ(M) 6= 0 and
let g and f as in Theorem 3.1. Then there exists an unbounded connected set G
of T -pairs which meets g−1(0) and such that π1(G) = [0,∞), where π1 denotes the
projection onto the first factor of [0,∞) × CT (M).

Proof. By the Poincaré-Hopf theorem deg(g, M) = χ(M) 6= 0. Hence by Theorem
4.1 there exists an unbounded connected set Γ of nontrivial T -pairs whose closure Γ̄
meets g−1(0). Take G = Γ̄; since M is bounded and G is unbounded and connected,
it meets {λ} × CT (M), for any λ ≥ 0, and the assertion follows.

Another application of Theorem 3.1 is the following continuation principle. It
extends (but only in the context of differentiable manifolds) a result proved in [2]
for locally Lipschitzian vector fields on closed flow-invariant ENR’s.

Theorem 4.3. Let g and f as in Theorem 3.1 and let Ω0 be a bounded open subset
of CT (M) with complete closure and such that

(i) for any λ̄ > 0 given, the family of functions
{

t 7→ |g (x(t)) + λf (t, x(t))| : x ∈ Ω0 , λ ∈ [0, λ̄]
}

is dominated by an L1
T (R) function;

(ii) the degree deg(g, M ∩ Ω0) is well defined and nonzero.

Then the equation (3) admits in [0,∞)×Ω0 a connected set of T -pairs whose closure
in [0,∞) × CT (M) meets Ω0 ∩ g−1(0) and either intersects [0,∞) × ∂Ω0 or meets
{λ} × Ω0 for any λ ≥ 0.

In particular, if in addition

(iii) the set [0, 1]× ∂Ω0 does not contain any T -pair of (3),

then the equation ẋ = g(x) + f(t, x) has a T -periodic solution in Ω0.
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Proof. Take Ω = [0,∞) × Ω0, assumption (ii) implies that deg(g, Ω ∩ M) 6= 0.
Hence, by Theorem 3.1, there exists a connected set Γ of nontrivial T -pairs in Ω
whose closure Γ̄ in [0,∞) × CT (M) meets Ω ∩ g−1(0) = Ω0 ∩ g−1(0) and is not
relatively compact in Ω.

Assume that Γ̄ ∩
(

[0,∞) × ∂Ω0

)

= ∅. In this case Γ̄ must be unbounded, since
otherwise, arguing as in the proof of Lemma 2.2, from assumption (i) it would follow
the compactness of Γ̄. Hence, given λ ≥ 0, Γ̄ cannot be contained in [0, λ] × Ω0.
The assertion follows by the connectedness of Γ̄.

The last statement is proved by an analogous argument.

Remark 4.4. If M is a closed manifold, then in Theorem 4.3 the assumption (i)
is always fulfilled. Indeed, if Z denotes the closure in Rk of the set {x(t) : x ∈
Ω0 , t ∈ [0, T ]} then, Ω0 being bounded, Z is a compact subset of M , because M is
closed in Rk. Hence, by the Carathéodory assumption on f , there exists a L1

T (R)
function γZ such that |f(t, p)| ≤ γZ(t) for a.a. t ∈ R and all p ∈ Z. Thus, for any
x ∈ Ω0 and λ ∈ [0, λ̄],

|g (x(t)) + λf (t, x(t))| ≤ max
p∈Z

|g(p)| + γZ(t) , a.e. in R.

As a consequence of Theorem 3.1 we get the following continuation principle
that, in the flat case, i.e. when M = Rk, reduces to Theorem 2 in [2].

Corollary 4.5. Let g, f and M be as in Theorem 4.3 and assume in addition M
to be closed in Rk. Let Ω0 be an open bounded subset of CT (M) such that

(i) the degree deg(g, M ∩ Ω0) is well defined and nonzero;
(ii) the set [0, 1]× ∂Ω0 does not contain any T -pair of (3).

Then the equation ẋ = g(x) + f(t, x) has a T -periodic solution in Ω0.

Proof. Since M is closed, CT (M) is a complete metric space; hence Ω0 has com-
plete closure. The assertion follows from Remark 4.4 and Theorem 4.3.

A straightforward consequence of Corollary 4.5 is the following.

Corollary 4.6. Let g, f and M as in Theorem 3.1 and assume in addition M to
be closed in Rk. Let W be an open and bounded subset of M such that

(i) the degree deg(g, W ) is well defined and nonzero;
(ii) for any λ ∈ [0, 1], if x is a T -periodic solution of (3) then ∂W ∩x ([0, T ]) =

∅.

Then the equation ẋ = g(x)+f(t, x) has a T -periodic solution x such that x ([0, T ]) ⊂
W .

Proof. Take Ω0 = {x ∈ CT (M) : x ([0, T ]) ⊂ W}. Since W = M ∩ Ω0, the degree
deg(g, M∩Ω0) is well defined and nonzero. The assertion follows applying Corollary
4.5 to Ω0.

As a final application of Theorem 3.1 we extend a result of [8] about forced
oscillations of a pendulum-type equation. Consider the following second order dif-
ferential equation

(7) θ̈ = g(θ) + λf(t, θ),

where g : R → R and f : R×R → R are 2π-periodic in θ, g is continuous and f is
Carathéodory, T -periodic in t. It is convenient to regard g and f as defined on S1

and R× S1 respectively.
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Equivalently, (7) may be seen as a first order differential equation on the manifold
S1 ×R (the tangent bundle to S1) as follows:

(8)

{

ẋ1 = x2

ẋ2 = g(x1) + λf(t, x1) .

Assume that g takes both positive and negative values and it has exactly two
zeros θ1 and θ2 on S1. Hence (θ1, 0) and (θ2, 0), which we identify with θ1 and
θ2, are the unique zeros of the vector field (x1, x2) 7→ (x2, g(x1)) (which can be
regarded as a tangent vector field on S1 × R). In what follows, θ1 and θ2 will be

also identified, respectively, with the trivial T -pairs (0; θ̂1, 0), (0; θ̂2, 0), where θ̂i is
the constant map t 7→ θi for i ∈ {1, 2}.

Theorem 4.7. Let f and g be as above. Denote by C1 and C2 the connected
components of the set of T -pairs of (8) containing θ1 and θ2 respectively. Then for
any µ ≥ 0, the intersections of C1 and C2 with [0, µ] × CT (S1 × R) are bounded.
Moreover, exactly one of the following alternatives holds:

(1) C1 = C2,
(2) C1 and C2 are disjoint and both unbounded.

In particular, if the second alternative holds, there exist at least two distinct T -
periodic solutions of (7) for each λ ∈ [0,∞).

Proof. The proof is analogous to that of Theorem 4.1 in [8] with only small changes
due to the Carathéodory assumptions on f .

The theorem above leads to the desired multiplicity result.

Corollary 4.8. Let g : R → R be a 2π-periodic continuous function whose image
contains 0 in its interior. Assume that g has exactly two zeros θ1, θ2 ∈ [0, 2π).
Then, given a Carathéodory function (t, θ) 7→ f(t, θ), T -periodic in t ∈ R and
2π-periodic in θ, there exists λf > 0 such that the equation (7) has at least two
geometrically distinct T -periodic solutions for each λ ∈ [0, λf ].

Proof. Let C1 and C2 be as in Theorem 4.7. It is enough to consider the case when
C1 = C2 = C. Theorem 4.7 implies that the intersection C0 of C with the slice {0}×
CT (S1 × R) is bounded, hence compact; in particular, any connected component
of C0 is compact. Proceeding as in the proof of Corollary 4.2 in [8] one can show
that the T -pairs θ1 with θ2 belong to different connected components of C0, say
C0,1 and C0,2 respectively. By the local compactness of C and the compactness of
C0,1 and C0,2 it follows that in CT (S1 × R) there exist open neighborhoods Wi,
i = 1, 2, of C0,i, with disjoint closures, and a positive number λf such that

C ∩
{

[0, λf ] × (∂W1 ∪ ∂W2)
}

= ∅.

The assertion now follows from the connectedness of C.
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