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PERIODIC SOLUTIONS OF SEMI-EXPLICIT

DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH

TIME-DEPENDENT CONSTRAINTS

LUCA BISCONTI, ALESSANDRO CALAMAI AND MARCO SPADINI

Abstract. In this paper we investigate the properties of the set of T -periodic
solutions of semi-explicit parametrized Differential-Algebraic Equations with
non-autonomous constraints of a particular type. We provide simple, degree-
theoretic conditions for the existence of branches of T -periodic solutions of
the considered equations. Our approach is based on topological arguments
about differential equations on implicitly defined manifolds, combined with
elementary facts of matrix analysis.
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1. Introduction

Several mathematical models arising from physical and engineering problems can
be described in terms of differential-algebraic equations (DAEs). Because of this,
in recent years, there has been a lot of interest on these equations from both the
point of view of the pure and applied mathematicians. Beside the more genuinely
modelistic or numerical approaches, there are many books and papers that treat
DAEs from an analytical perspective. Of all those, in order to avoid an impossibly
long and necessarily incomplete list, we only mention [9, 10, 11] and references
therein.

A relevant case is represented by first order semi-explicit DAEs in Hessenberg
form (see, e.g., [9]) that is:

(1.1) { ẋ = f(t, x, y),G(t, x, y) = 0,
where f ∶R × R

m × R
s
→ R

m is a continuous map, and G∶R × R
m × Rs

→ R
s is

sufficiently smooth. If we assume that the partial derivative, ∂3G, of G with respect
to the third variable y is invertible, then (1.1) is said to be of index 1.

In this paper we are concerned with a parametrized special case of (1.1). In fact,
we assume that the constraint G has the form

G(t, x, y) = g(A(t)x,B(t)y)
where g∶Rm ×Rs

→ R
s is C∞, and the square-matrix-valued maps A∶R → O(Rm)

and B∶R → GL(Rs) are continuous. Here O(Rm) denotes the group of orthogonal
m ×m matrices and GL(Rs) the group of s × s invertible ones.

Namely, for λ ≥ 0 we consider parametrized DAEs of the following form

(1.2) { ẋ = λf(t, x, y), λ ≥ 0,
g(A(t)x,B(t)y) = 0,

with f as in (1.1), and we assume that ∂2g(x, y) is invertible for all (x, y) ∈ Rm×Rs

and (for technical reasons) that A is of class C1.
1
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We also treat, in parallel, the following parametrized second order DAEs

(1.3) { ẍ = λf(t, x, y, ẋ, ẏ), λ ≥ 0,
g(A(t)x,B(t)y) = 0.

In this case we assume the matrix-valued maps A and B to be of class C2 and C1,
respectively. The latter type of equations, in particular, may be used to represent
some nontrivial physical systems as, for instance, constrained systems (see e.g. [10]).

We will assume throughout the paper that the matrix-valued function A satisfies
the following property:

(1.4) A(t)Ȧ(t)⊤ is constant ∀t ∈ R.
This assumption might seem unnatural, but it is not so. To understand why,
consider the case when m = 3. In that case, if {e1, e2, e3} is a fixed reference frame
in R

3 and T (t) = {A(t)e1,A(t)e2,A(t)e3} is a moving frame, our assumption is
equivalent to imposing that the angular velocity of T is the zero vector. This is,
in fact, an immediate consequence of the definition of angular velocity. An entirely
similar statement holds for m = 2.

Furthermore, in this paper we will always assume that, for some given T > 0,
the map f is T -periodic in the first variable and that A and B are T -periodic.
Following the approach of [3, 4, 5, 12], we study qualitative properties of the set of
T -periodic solutions of (1.2) and (1.3). Roughly speaking, we show the existence of
an unbounded connected set of “nontrivial” T -periodic solutions of (1.2) or (1.3)
emanating from the set of its constant solutions. Precise statements will be given
in Subsection 3.1 for first order equations and in Subsection 3.2 for second order
ones. We also show, through some examples and remarks, how our constructions
can be extended to include several equations of different forms.

Our continuation results are in the spirit of analogous ones by Furi and Pera for
parametrized first- and second-order equations on differentiable manifolds (for more
details see the survey [6]) and could be considered, in some sense, as consequences
of recent results obtained by the last two authors in [3, 4, 5, 12]. However, we
wish to point out the following facts. First of all, while the continuation results
on differentiable manifolds by Furi and Pera require the knowledge of the degree
(often called characteristic or rotation) of suitable tangent vector fields, here (as
in [3, 4, 5, 12]) we give conditions only in terms of the well-known Brouwer degree
which is also easier to compute explicitly. On the other hand, in the present paper
we tackle the case time-dependent constraints (even if of a peculiar form). In other
words, our results can be regarded as concerning ODEs on particular T -periodically
moving manifolds defined implicitly. As far as we know, the techniques of Furi and
Pera have never been applied to moving manifolds, and this novelty is our main
original contribution to the subject.

This paper is organized as follows. In Section 2 we collect the preliminaries
needed to approach the DAEs in (1.2) and (1.3). In Section 3 we give our main
results and we get topological information on the set of T -periodic pairs to the con-
sidered equations; examples of applications of our methods are provided. Finally,
in Section 4, we give the proofs of the technical results of matrix analysis used
throughout the paper.

Notation. Throughout the paper, CT (Rk) will denote the Banach space of all the
T -periodic continuous maps ζ ∶R → R

k with the usual supremum norm, and C1
T (Rk)

will be the Banach space of all the T -periodic C1 maps ζ ∶R → R
k with the C1 norm.
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2. Preliminary results

2.1. First order DAEs. Let us consider semi-explicit DAEs, depending on a pa-
rameter λ ≥ 0, of the following forms:

(2.1) { ẋ = f(x, y) + λh(t, x, y),
g(x, y) = 0,

and

(2.2) { ẋ = λh(t, x, y),
g(x, y) = 0,

where we assume that f∶Rm × Rs
→ R

m and h∶R ×Rm × Rs
→ R

m are continuous
maps, h is T -periodic in the first variable, and g∶Rm × Rs

→ R
s is C∞ and such

that ∂2g(x, y) is invertible for all (x, y). Notice that, consequently, M ∶= g−1(0) is
a closed submanifold of Rm × Rs. Furthermore observe that, even if (2.2) can be
considered as a particular case of (2.1) (i.e. with f(x, y) = 0 identically), for our
purposes the two equations need to be treated separately.

By a solution of (2.1) we mean a pair of C1 functions x and y defined on an
interval I with the property that the following equalites hold for all t ∈ I: ẋ(t) =
f(x(t), y(t))+λh(t, x(t), y(t)) and g(x(t), y(t)) = 0. The notion of solution of (2.2)
is analogous. Notice that one might wish to ask only the continuity of y. In fact,
if x is C1, the assumptions on g together with the implicit function theorem imply
that y is C1.

In this section we recall two results from [3] and [12] (see also [4]) about the sets of
T -pairs of (2.1) and of (2.2), namely, of those pairs (λ; (x, y)) ∈ [0,∞)×CT (Rm×Rs)
with (x, y) a T -periodic solution of (2.1) and of (2.2), respectively. Recall that a
T -pair (λ; (x, y)) of (2.1) or of (2.2) is said to be trivial if λ = 0 and (x, y) is
constant.

For the sake of simplicity we make some conventions. We will regard every space
as its image in the following diagram of natural inclusions

(2.3)

R
m ×Rs

ÐÐÐÐ→ CT (Rm ×Rs)×××Ö
×××Ö[0,∞) ×Rm ×Rs

ÐÐÐÐ→ [0,∞) ×CT (Rm ×Rs)
In particular, we will identify R

m × Rs with its image in CT (Rm ×Rs) under the
embedding which associates to any (p, q) ∈ Rm ×Rs the map (p̄, q̄) ∈ CT (Rm ×Rs)
constantly equal to (p, q). Moreover we will regard R

m ×Rs as the slice {0}×Rm ×
R

s ⊂ [0,∞) ×Rm ×Rs and, analogously, CT (Rm ×Rs) as {0} ×CT (Rm ×Rs). We
point out that the images of the above inclusions are closed.

For simplicity, given Ω ⊆ [0,∞) × CT (Rm × Rs), we will denote by Ω# the set

consisting of all the constant functions (p̄, q̄) with (0; (p̄, q̄)) ∈ Ω. We will regard
Ω# as a subset of Rm ×Rs.

The following is a consequence of Theorem 5.1 in [12].

Theorem 2.1. Let f, h, g be as above. Define F∶Rm ×Rs
→ R

m ×Rs by

F(x, y) = (f(x, y),g(x, y)).
Let Ω ⊆ [0,∞) ×CT (Rm ×Rs) be open and assume that deg(F ,Ω#) is well defined
and nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (2.1)
that meets F−1(0) ∩Ω and cannot be both bounded and contained in Ω.

The following is a consequence of Theorem 2.2 in [3].
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Theorem 2.2. Let h and g be as above. Define ω∶Rm ×Rs
→ R

m ×Rs by

ω(x, y) = ( 1
T
∫ T

0
h(x, y)dt,g(x, y)) .

Let Ω ⊆ [0,∞) ×CT (Rm ×Rs) be open and assume that deg(ω,Ω#) is well-defined
and nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (2.5)
that meets ω−1(0) ∩Ω and cannot be both bounded and contained in Ω.

2.2. Second order DAEs. Consider the following second order parametrized
DAEs:

(2.4) { ẍ = f(x, y, ẋ, ẏ) + λh(t, x, y, ẋ, ẏ),
g(x, y) = 0,

and

(2.5) { ẍ = λh(t, x, y, ẋ, ẏ),
g(x, y) = 0,

where we assume that f∶Rm×Rs×Rm×Rs
→ R

m and h∶R×Rm×Rs×Rm×Rs
→ R

m

are continuous maps, h is T -periodic in the first variable, and g∶Rm × Rs
→ R

s is
C∞ and such that ∂2g(x, y) is invertible for all (x, y).

By a solution of (2.4) we mean a pair of C2 functions x and y defined on an
interval I with the property that the following equalites hold for all t ∈ I: ẍ(t) =
f(t, x(t), y(t), ẋ(t), ẏ(t)) + λh(t, x(t), y(t), ẋ(t), ẏ(t)) and g(x(t), y(t)) = 0. Notice
that, as in the first order case, it is equivalent to ask only the continuity of y.

Remark 2.3. We wish to point out that, despite their similarity, it might not be
possible to reduce second order equations, such as (2.4) or (2.5), to first order ones,
as (2.1) or (2.2). Such is the case expecially when there is an explicit dependence
on ẏ. Thus the latter need a specific study.

Consider for instance equation (2.5). The introduction of a new variable u = ẋ,
as it is customary in phase-space techniques, would not reduce it to an equation
of the form (2.1) or (2.2) with the required properties. In fact, we would get an
equation of the type ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = u,
u̇ = λf(t, x, y, u, ẏ),
0 = ḡ((x,u), y),

where ḡ((x,u);y) = g(x, y), which is not of the form (2.1), because of the ẏ in the
second equation. The introduction of another auxiliary variable v = ẏ, as it could
seem natural, would only complicate matters. Indeed, the resulting equation would
be the following: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ = u,
ẏ = v,
u̇ = λf(t, x, y, u, v),
0 = ĝ((x,u); (y, v)),

where ĝ((x,u); (y, v)) = g(x, y). What is wrong with this equation is that the rigid
dimensional separation between the “differential” and the “algebraic” parts required
for (2.1) is now broken.

The structure of the set of solution pairs of (2.4) and of (2.5) has been studied
in [5]. As in Section 2.1, we recall that by a T -pair of (2.4) and of (2.5) we mean

a pair (λ; (x, y)) ∈ [0,∞) ×C1
T (Rm ×Rs) with (x, y) a T -periodic solution of (2.4)

and of (2.5), respectively. Again, a T -pair (λ; (x, y)) of (2.4) or of (2.5) is said to
be trivial if λ = 0 and (x, y) is constant.
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As in Section 2.1, for simplicity we will regard every space as its image in the
following diagram of natural inclusions

(2.6)

R
m ×Rs

ÐÐÐÐ→ C1
T (Rm ×Rs)×××Ö
×××Ö[0,∞) ×Rm ×Rs

ÐÐÐÐ→ [0,∞) ×C1
T (Rm ×Rs)

with the obvious analogous identifications.
Again, given Ω ⊆ [0,∞)×C1

T (Rm×Rs), we will denote by Ω# the set consisting of

all the constant functions (p̄, q̄) with (0; (p̄, q̄)) ∈ Ω and will regard Ω# as a subset
of Rm ×Rs.

The next results are straightforward consequences of Corollary 5.2 and Corollary
5.3 in [5], respectively.

Theorem 2.4. Let f, h, g be as above. Define F∶Rm ×Rs
→ R

m ×Rs by

F(x, y) = (f0(x, y),g(x, y)),
where f0(x, y) ∶= f(x, y,0,0). Let Ω ⊆ [0,∞) × C1

T (Rm × Rs) be open and assume
that deg(F ,Ω#) is well defined and nonzero. Then there exists a connected set Γ
of nontrivial T -pairs for (2.4) that meets F−1(0) ∩Ω and cannot be both bounded
and contained in Ω.

Theorem 2.5. Let h and g be as above. Define ω∶Rm ×Rs
→ R

m ×Rs by

ω(x, y) = ( 1
T
∫ T

0
h0(x, y)dt,g(x, y)) ,

where h0(x, y) ∶= h(x, y,0,0). Let Ω ⊆ [0,∞) × CT (Rm × Rs) be open and assume
that deg(ω,Ω#) is well-defined and nonzero. Then there exists a connected set Γ of
nontrivial T -pairs for (2.5) that meets ω−1(0)∩Ω and cannot be both bounded and
contained in Ω.

3. Coordinate transformation and main results

3.1. First order DAEs. We first investigate parametrized DAEs of the following
form:

(3.1) { ẋ = λf(t, x, y), λ ≥ 0,
g(A(t)x,B(t)y) = 0

where, as in the introduction, the map f ∶R × Rm × Rs
→ R

m is continuous and
T -periodic in the first variable, g∶Rm × Rs

→ R
s is C∞ and such that ∂2g(ξ, η)

is invertible for all (ξ, η), and A∶R → O(Rm) and B∶R → GL(Rs) are T -periodic
continuous (square-)matrix-valued maps. We will assume that A is of class C1.

Let us apply, for all t, a change of coordinates in R
m ×Rs:

(3.2) ξ(t) = A(t)x(t), η(t) = B(t)y(t).
Let us rewrite the first of these two equations as x(t) = A⊤(t)ξ(t). Differentiating
with respect to t we get

(3.3) ẋ(t) = Ȧ(t)⊤ξ(t) +A(t)⊤ξ̇(t).
Observe, in fact, that the operations of differentiation and transposition commute;
that is:

(Ȧ(t))⊤ = d

dt
(A(t)⊤) .
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From (3.3) we get ξ̇(t) = −A(t)Ȧ(t)⊤ξ(t) +A(t)ẋ(t). Thus, equation (3.1) can be
rewritten in the new coordinates (ξ, η) as follows:
(3.4) { ξ̇ = −A(t)Ȧ(t)⊤ξ + λF (t, ξ, η), λ ≥ 0,

g(ξ, η) = 0
where F ∶R ×Rm ×Rs

→ R
m is defined by

(3.5) F (t, ξ, η) = A(t)f(t,A(t)⊤ξ,B−1(t)η).
If we assume that the matrix M ∶= A(t)Ȧ(t)⊤ is constant, then we can obtain con-
tinuation results for T -pairs of (3.1) as consequences of the results in the previous
section.

In the following we will adopt the same notation as in Section 2.1.

Theorem 3.1. Let f, g,A and B be as above. Assume that M ∶= A(t)Ȧ(t)⊤ is
constant and define F∶Rm × Rs

→ R
m × Rs by F(x, y) = (Mx,g(x, y)). Let Ω ⊆[0,∞) × CT (Rm × R

s) be open and assume that deg(F ,Ω#) is well-defined and
nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (3.1) that
meets F−1(0) ∩Ω and cannot be both bounded and contained in Ω.

Proof. Consider the transformation (3.2). As discussed above, in the new coordi-
nates ξ, η equation (3.1) becomes (3.4), which we write as

(3.6) { ξ̇ = −Mξ + λF (t, ξ, η),
g(ξ, η) = 0,

where F is defined as in (3.5). Consider also the homeomorphism H∶ [0,∞) ×
CT (Rm × Rs) → [0,∞) × CT (Rm × Rs) given by H(λ, (x, y)) = (λ, (ξ, η)) with ξ

and η given by (3.2). Clearly H establish a homeomorphism between the space X

of T -pairs of (3.6) and the space X of T -pairs of (3.4), which preserves triviality.
In the sense that H takes trivial T -pairs of (3.6) to trivial ones of (3.4) and, vice
versa, H−1 makes trivial T -pairs of (3.4) correspond to trivial ones of (3.6).

Let W = H(Ω). Applying Theorem 2.1 we get the existence of a connected set,
let us say Υ, of nontrivial T -pairs for (3.6) that meets F−1(0) ∩W and cannot be
both bounded and contained in W . One sees immediately that Γ = H−1(Υ) has the
required properties. �

In the following consequence of Theorem 3.1 we further assume that M is non-
singular and use the properties of Brouwer degree to get a continuation result with
the sole assumption that [g(0, ⋅)]−1(0) ∩Ω# is a nonempty and compact subset of
R

m
×R

s.

Corollary 3.2. Let f, g,A and B be as above. Assume that M ∶= A(t)Ȧ(t)⊤ is
constant and nonsingular. Let Ω ⊆ [0,∞)×CT (Rm

×R
s) be open. Assume that the

set [g(0, ⋅)]−1(0)∩Ω# is nonempty and compact. Then there exists a connected set
Γ of nontrivial T -pairs for (3.1) that meets [g(0, ⋅)]−1(0) ∩ Ω and cannot be both
bounded and contained in Ω.

Proof. Let F be as in the assertion of Theorem 3.1. Since the first component ofF is nonsingular, the reduction property of Brouwer degree implies

deg(F ,Ω#) = detM ⋅ deg (g(0, ⋅),Ω# ∩ ({0}×Rs)).
Observe now that since ∂2g(ξ, η) is never singular,

∣deg (g(0, ⋅),Ω# ∩ ({0} ×Rs))∣ =#([g(0, ⋅)]−1(0)∩Ω#),
which is finite and nonzero. �

In the next result we assume M = 0 and apply Theorem 2.2.
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Theorem 3.3. Let f, g,A and B be as above. Assume that A(t)Ȧ(t)⊤ is identically
zero and define ω∶Rm

×R
s
→ R

m
×R

s by

ω(ξ, η) = ( 1
T
∫ T

0
A(t)f(t,A(t)⊤ξ,B−1(t)η)dt, g(ξ, η)) .

Let Ω ⊆ [0,∞) ×CT (Rm
×R

s) be open and assume that deg(ω,Ω#) is well-defined
and nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (3.1)
that meets ω−1(0) ∩Ω and cannot be both bounded and contained in Ω.

Proof. Follows from Theorem 2.2 whith the same proof of Theorem 3.1. �

Example 3.4. Take m = 2 and s = 1. Let f ∶R × R2
× R → R

2 be any continuous
mapping 2π-periodic in the first variable. Consider

(3.7) { ẋ = λf(t, x, y), λ ≥ 0,
y3 + y − x2

1 − x
2
2 − (x1 sin t + x2 cos t)2 = 0,

where x = (x1, x2). It is readily verified that

y3 + y − x2
1 − x

2
2 − (x1 sin t + x2 cos t)2 = g(A(t)x, y),

where

A(t) ∶= (cos t − sin t
sin t cos t

) , and g(p1, p2, q) = q3 + q − p21 − 2p22.
Thus, the constraint can be regarded as the surface having equation q3+q = p21+2p22,
in the space (p1, p2, q), revolving around the q axis (a full rotation takes time 2π).
With the transformation (3.2) the above DAE becomes

{ ξ̇ =Mξ + λF (t, ξ, η),
g(ξ, η) = 0,

where

M ∶= ( 0 1
−1 0

) , and F (t, ξ, η) = A(t)f(t,A(t)⊤ξ,B−1(t)η).
Let Ω = [0,∞) × CT (R2

× R). Since the degree in R of the map (ξ1, ξ2, η) ↦(ξ2,−ξ1, η3 + η − ξ21 − ξ22) is equal to 1, Theorem 3.1 yields an unbounded connected

set of nontrivial 2π-pairs for (3.7) that meets (0; (0,0; 0)) ∈ [0,∞)×R2
×R (regarded

as a 2π-pair).

Remark 3.5. Notice that a similar coordinate transformation applies also to a
slightly different situation. Consider the following DAE:

(3.8) { ẋ =Hx + λf(t, x, y), λ ≥ 0,
g(A(t)x,B(t)y) = 0

where A, B, f and g are as in (3.1) and H is a matrix that commutes with A.

Suppose, as above, that M ∶= A(t)Ȧ(t)⊤ is constant (not necessarily invertible) and
apply the transformation as indicated above. Equation (3.8) becomes

(3.9) { ξ̇ = (H −M)ξ + λF (t, ξ, η), λ ≥ 0,
g(ξ, η) = 0

with F as in (3.4), so that the results of the previous section are applicable to (3.9).

Example 3.6. Consider the following DAE:

(3.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = x1 + λf1(t, x1, x2, y)
ẋ2 = λf2(t, x1, x2, y)
y5 + y = x1 cos t + x2 sin t
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where fi∶R ×R ×R ×R → R
2, i = 1,2, are continuous mappings 2π-periodic in the

first variable. If we put x = (x1, x2) Equation (3.10) is of the form (3.8) with

H = (1 0
0 0
) , A(t) = ( cos t sin t

− sin t cos t
) , B(t) ≡ (1 0

0 1
) ,

and f ∶R ×R2
→ R

2 and g∶R2
×R→ R defined by

f(t, x) = (f1(t, x1, x2, y), f1(t, x1, x2, y)) and g(x, y) = y + y3 − x1,

respectively. Clearly, as in Remark 3.5, Equation (3.10) becomes

(3.11) { ξ̇ = (H −M)ξ + λF (t, ξ, η),
η + η5 − ξ1 = 0,

where

M ∶= (0 −1
1 0

) , and F (t, ξ, η) = A(t)f(t,A(t)⊤ξ,B−1(t)η).
Equation (3.11) is of the form considered in Corollary 3.2.

In our next example we consider periodic perturbations of a class of semi-linear
DAEs (semi-linear DAEs find practical applications in robotics and electrical circuit
modeling see e.g. [7, 9]). We will restrict ourselves to the case when the equation
has a particular ‘separated variables ’ form, that is

(3.12) Eẋ = F (t)x + λC(t)S(x),
F ∶ R → R

n×n, C ∶ R → R
n×n and S ∶ Rn

→ R
n are continuous maps. Further, we

assume that F and C are T -periodic, T > 0 given.

Example 3.7. Consider Equation (3.12) with n = 4 and

E =
⎛⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
, F (t) =

⎛⎜⎜⎜⎝

0 0 0 0
cos t 1 0 − sin t
0 0 0 0

sin t 0 1 cos t

⎞⎟⎟⎟⎠
and

C(t) =
⎛⎜⎜⎜⎝

2 + cos t 1 0 1
0 0 0 0
1 3 + sin t 2 0
0 0 0 0

⎞⎟⎟⎟⎠
, S(x) = x.

The following orthogonal matrices

P =
⎛⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠
and Q =

⎛⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎠
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realize a singular value decomposition for E. In particular, we have that

P ⊤EQ =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
=∶ ( Ẽ1 0

0 0
) ,

P ⊤F (t)Q =
⎛⎜⎜⎜⎝

0 0 0 0
0 0 0 0

cos t − sin t 1 0
sin t cos t 0 1

⎞⎟⎟⎟⎠
=∶ ( 0 0

F̃3(t) F̃4(t) )

P ⊤C(t)Q =
⎛⎜⎜⎜⎝

2 + cos t 1 1 0
1 0 3 + sin t 2
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
=∶ ( C̃1(t) C̃2(t)

0 0
) .

Then, setting x = Q ( xy ) with x, y ∈ R2 and multiplying (3.12) by P ⊤ on the left, we
can rewrite Equation (3.12) as

P ⊤EQ ( ẋẏ ) = P ⊤F (t)Q (xy ) + λ(P ⊤C(t)Q)Q⊤S(Q ( xy ) ).
that is,

(Ẽ1 0
0 0

)(ẋ
ẏ
) = ( 0 0

F̃3(t) F̃4(t))(
x

y
) + λ(C̃1(t) C̃2(t)

0 0
)(S̃1(x, y)

S̃2(x, y))
where we have set Q⊤S(Qx) = ( S̃1(x,y)

S̃2(x,y)
). This equation can be rewritten as follows:

⎧⎪⎪⎨⎪⎪⎩
ẋ = λẼ−11 (C̃1(t)S̃1(x, y) + C̃2(t)S̃2(x, y)),
y + F̃3(t)x = 0,

or, in our case, as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ẋ1

ẋ2
) = λ( (2 + cos t)x1 + x2 + y1

x1 + (3 + sin t)y1 + 2y2) ,
(y1
y2
) + (cos t − sin t

sin t cos t
)(x1

x2
) = 0,

where we have put x = ( ẋ1

ẋ2
) and y = ( y1

y2
). The above DAE is of the form (3.1)

considered in Theorem 3.3. Observe that the map ω considered there is given by

ω(x1, x2;y1, y2) = (y1,3y1 + 2y2, x1 + y1, x2 + y2).
The example considered above is a particular case of a more general procedure

that we now roughly sketch. Take E, F and C as in Equation (3.12), and let
rankE = r. Assume that n = 2r, and that

ker C⊤(t) = ker E⊤ ∀ t ∈ R,(3.14a)

im F (t) = ker E⊤ ∀ t ∈ R.(3.14b)

Let P , Q be orthogonal matrices realizing a singular value decomposition for E.
Multiply (3.12) by P ⊤ on the left, and put x = Q ( xy ) with x, y ∈ Rr. We get, as in
Example 3.7,

(3.15) P ⊤EQ ( ẋẏ ) = P ⊤F (t)Q (xy ) + λ(P ⊤C(t)Q)Q⊤S(Q ( xy ) ).
Since P and Q realize a singular value decomposition of E, and since E, F and C

satisfy equations (3.14), an inspection of the proof of [1, Lemma 5.5] (see also [2])
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shows us that for all t,

P ⊤EQ = (Ẽ1 0
0 0

) , P ⊤F (t)Q = ( 0 0

F̃3(t) F̃4(t)) and P ⊤C(t)Q = (C̃1(t) C̃2(t)
0 0

) .
Set x = Q ( xy ) and Q⊤S(Qx) = ( S̃1(x,y)

S̃2(x,y)
). Then, we can rewrite Equation (3.15) as

(Ẽ1 0
0 0

)(ẋ
ẏ
) = ( 0 0

F̃3(t) F̃4(t) )(
x

y
) + λ( C̃1(t) C̃2(t)

0 0
)(S̃1(x, y)

S̃2(x, y))
or, equivalently

{ ẋ = λẼ−11 (C̃1(t)S̃1(x, y) + C̃2(t)S̃2(x, y)) ,
F̃3(t)x + F̃4(t)y = 0,

and, if F̃3(t) is invertible for all t,

(3.16) { ẋ = λẼ−11 (C̃1(t)S̃1(x, y) + C̃2(t)S̃2(x, y)) ,
x + [F̃3(t)]−1F̃4(t)y = 0,

which is of type (3.1) with m = s = r if also F̃4(t) is invertible for all t.

3.2. Second order DAEs. Let us now focus on parametrized second order DAEs
and proceed as in the first order case. Consider

(3.17) { ẍ = λf(t, x, y, ẋ, ẏ), λ ≥ 0,
g(A(t)x,B(t)y) = 0

where f ∶R × Rm
× R

s
× R

m
× R

s
→ R

m is continuous and T -periodic in the first
variable, g∶Rm

×R
s
→ R

s is C∞ and such that ∂2g(ξ, η) is invertible for all (ξ, η),
and the T -periodic matrix-valued maps A∶R → O(Rm) and B∶R → GL(Rs) are of
class C2 and C1, respectively. As in the frst order case we consider the following
change of coordinates for all t:

ξ(t) = A(t)x(t), η(t) = B(t)y(t).
We can rewrite the first of these equations as x(t) = A⊤(t)ξ(t) and, taking the
derivative, we get

ẋ = Ȧ(t)⊤ξ +A(t)⊤ξ̇, ẍ = Ä(t)⊤ξ + 2Ȧ(t)⊤ξ̇ +A(t)⊤ξ̈.
Let us multiply by A on the left the second of these equations. Reordering (and
omitting the explicit dependence on t) we get

ξ̈ = −AÄ⊤ξ − 2AȦ⊤ξ̇ +Aẍ.
Moreover, since y(t) = B−1(t)η(t),

ẏ(t) = d

dt
[B(t)−1] η(t) +B−1(t)η̇(t).

Thus we can rewrite our DAE, in the new coordinates, as follows:

(3.18) { ξ̈ = −A(t)Ä(t)⊤ξ − 2A(t)Ȧ(t)⊤ξ̇ + λF (t, ξ, η, ξ̇, η̇), λ ≥ 0,
g(ξ, η) = 0.

where F ∶R ×Rm
×R

s
×R

m
×R

s
→ R

m, defined by

F (t, ξ, η, u, v) =
A(t)f (t,A(t)⊤ξ,B−1(t)η, Ȧ(t)⊤ξ +A(t)⊤u, d

dt
[B(t)−1] η +B−1(t)v)

is clearly continuous and T -periodic.
Now, by Proposition 4.3 (see Appendix), we have that if M ∶= A(t)Ȧ(t)⊤ is

constant (and nonsingular), then A(t)Ä(t)⊤ is constant (and nonsingular) as well,
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as it is equal to M2. Thus, as for first-order equations, provided that A(t)Ȧ(t)⊤ is
constant, this DAE can be treated with the methods of the previous section.

It is also worth noticing that d
dt
[B(t)−1], which appears in the expression of

F , can also be conveniently expressed as −B(t)−1Ḃ(t)B(t)−1. This trivial fact is
readily established by differentiating the relation B(t)B(t)−1 = I.

Proceeding as in the previous subsection, and using Theorems 2.4 and 2.5 in
place of Theorems 2.1 and 2.2, we get the following results, remarkably similar to
Theorems 3.1 and 3.3, and Corollary 3.2:

Theorem 3.8. Let f, g,A and B be as above. Assume that M ∶= A(t)Ȧ(t)⊤ is
constant and define F ∶Rm

× R
s
→ R

m
× R

s by F(ξ, η) = ( −M2ξ, g(ξ, η)). Let

Ω ⊆ [0,∞)×C1
T (Rm

×R
s) be open and assume that deg(F ,Ω#) is well-defined and

nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (3.17) that
meets F−1(0) ∩Ω and cannot be both bounded and contained in Ω.

Corollary 3.9. Let f, g,A and B be as above. Assume that M ∶= A(t)Ȧ(t)⊤ is
constant and nonsingular. Let Ω ⊆ [0,∞)×C1

T (Rm
×R

s) be open. Assume that the
set [g(0, ⋅)]−1(0)∩Ω# is nonempty and compact. Then there exists a connected set
Γ of nontrivial T -pairs for (3.17) that meets [g(0, ⋅)]−1(0) ∩Ω and cannot be both
bounded and contained in Ω.

Theorem 3.10. Let f, g,A and B be as above. Assume that A(t)Ȧ(t)⊤ is identi-
cally zero and define ω∶Rm

×R
s
→ R

m
×R

s by

ω(ξ, η) = ( 1
T
∫ T

0
A(t)f(t,A(t)⊤ξ,B−1(t)η,0,0)dt, g(ξ, η)) .

Let Ω ⊆ [0,∞) ×C1
T (Rm

×R
s) be open and assume that deg(ω,Ω#) is well-defined

and nonzero. Then there exists a connected set Γ of nontrivial T -pairs for (3.17)
that meets ω−1(0) ∩Ω and cannot be both bounded and contained in Ω.

In the next example we consider the same time-dependent constraint as in Ex-
ample 3.4, but in the case of second-order DAEs.

Example 3.11. Let f be as in Example 3.4. Consider

{ ẍ = λf(t, x, y), λ ≥ 0,
y3 + y − x2

1 − x
2
2 − (x1 sin t + x2 cos t)2 = 0,

where x = (x1, x2). Applying the coordinate transformation as described above we
rewrite our DAE as follows:

{ ξ̈ = ξ − 2Mξ̇ + λA(t)f (t,A(t)⊤ξ, η) , λ ≥ 0,
η3 + η − ξ21 − 2ξ

2
2 = 0.

Where

M ∶= AȦ⊤ = ( 0 1
−1 0

)
so that AÄ⊤ = M2 = −I. Put F(p1, p2, q) = (p1, p2, q3 + q − p21 − 2p22), and let

Ω = [0,∞) × C1
T (R2

×R). Then, since deg(F ,R3) = 1 ≠ 0, Theorem 3.8 yields an

unbounded connected set of 2π-periodic pairs emanating from (0; (0,0; 0)) ∈ [0,∞)×
R

2
×R (regarded as a 2π-pair).

Remark 3.12. As in the first order case, our coordinate transformation applies
also to a slightly different situation. Consider the following DAE:

(3.19) { ẍ =H1ẋ +H2x + λf(t, x, y), λ ≥ 0,
g(A(t)x,B(t)y) = 0,
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where A, B, f and g are as in (3.17) and Hi, i = 1,2, are matrices that com-

mute with A. Suppose, as above, that M ∶= A(t)Ȧ(t)⊤ is constant (not necessarily
invertible) and apply the transformation as indicated above. Equation (3.8) becomes

(3.20) { ξ̈ = (H1M +H2 −M
2)ξ + (H1 − 2M)ξ̇ + λF (t, ξ, η), λ ≥ 0,

g(ξ, η) = 0.
with F as in (3.18), so that the results of Subsection 2.2 are applicable to (3.20).

Remark 3.13. Let us consider the following second order DAE

(3.21) { d2

dt2
(C(t)x) = λf(t, x, y, ẋ, ẏ), λ ≥ 0,

g(A(t)x,B(t)y) = 0,
where f , A and B are as in (3.17) and t ↦ C(t) ∈ O(Rm) is C2 and T -periodic.

We also assume that C has the same property as A, that is, C(t)Ċ(t)⊤ is constant.
Expanding the derivative on the left-hand side of the first equation in (3.21) and
using the fact that C(t) ∈ O(Rm), for all t ∈ R, we rewrite (3.21) as follows

(3.22) { ẍ = −2C⊤Ċẋ −C⊤C̈x + λC⊤f(t, x, y, ẋ, ẏ),
g(Ax,By) = 0

where, to keep the notation coincise, the explicit dependence on t of A, B and C is
omitted. Proposition 4.3 shows that K1 ∶= C(t)⊤Ċ(t) is constant and, by Remark

4.4 (3), it follows that K2 ∶= C(t)⊤C̈(t) is constant as well being equal to −K2
1 .

Hence, (3.22) is of the form (3.19). Notice that if we assume that A commutes with
K1, then it commutes with K2 as well. In conclusion, if K1 commutes with A(t)
for all t ∈ R, Remark 3.12 applies with H1 = −2K1 and H2 = −K2.

4. Appendix: some lemmas of Matrix Analysis

This section gathers, for reference purposes, a few simple facts –possibly well-
known– concerning time dependent matrices.

Lemma 4.1. Let t ↦ A(t) be a C2 square-matrix-valued function. Suppose that

the map t ↦ A(t)Ȧ⊤(t) is constant. Then,

Ä(t)A(t)⊤ = A(t)Ä(t)⊤(4.1)

Ä(t)A(t)⊤ = −Ȧ(t)Ȧ(t)⊤(4.2)

Proof. For the sake of simplicity, we drop the explicit indication of the dependence
of A on t.

Let us put M = AȦ⊤. Then, ȦA⊤ = (AȦ⊤)⊤ = M⊤ is also constant. Taking the
derivative with respect to t of both these relations, we get

(4.3) ȦȦ⊤ +AÄ⊤ = 0, ÄA⊤ + ȦȦ⊤ = 0.
Hence,

0 = ȦȦ⊤ +AÄ⊤ − ÄA⊤ − ȦȦ⊤ = AÄ⊤ − ÄA⊤,
which implies (4.1).

From (4.3) and (4.1) it follows

0 = ȦȦ⊤ +AÄ⊤ + ÄA⊤ + ȦȦ⊤ = 2ȦȦ⊤ + 2ÄA⊤,
whence the assertion. �

Observe that under the hypothesis of Lemma 4.1, since

[Ä(t)A(t)⊤]⊤ = Ä(t)A(t)⊤,
Equation (4.1) imply the simmetry of AÄ⊤.
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Lemma 4.2. Let t ↦ A(t) be a C1 square-matrix-valued function. Assume that

A(t) is orthogonal for all t, then Ȧ(t)Ȧ(t)⊤ = −(A(t)Ȧ(t)⊤)2.
Proof. Differentiating the relation A⊤A = I we obtain Ȧ⊤A = −A⊤Ȧ. Multiplying
this relation on the left by Ȧ and on the right by A⊤, we get

ȦȦ⊤AA⊤ = −ȦA⊤ȦA⊤.
Since AA⊤ = I and ȦȦ⊤ = (ȦȦ⊤)⊤, transposing yields

ȦȦ⊤ = −[(ȦA⊤)⊤]2 = −(AȦ⊤)2,
as desired. �

Formula 4.2 and Lemma 4.2 together yield the following fact:

Proposition 4.3. Let t ↦ A(t) be a C2 square-matrix-valued function. Assume

that A(t) is orthogonal for all t and that the map t ↦ A(t)Ȧ⊤(t) =∶ M is con-

stant. Then Ä(t)A(t)⊤ = (A(t)Ȧ(t)⊤)2 is constantly equal to M2. In particular, if

A(t)Ȧ⊤(t) is constant and nonsingular then so is Ä(t)A(t)⊤.
Remark 4.4. Replacing A with A⊤, it is easy to verify that results analogous
to Lemma 4.1, Lemma 4.2 and Proposition 4.3 hold if we assume the constancy of
A(t)⊤Ȧ(t) instead of that of A(t)Ȧ(t)⊤. Namely, if t ↦ A(t) is a C2 square-matrix-

valued function such that A(t) is orthogonal for all t and the map t ↦ A(t)⊤Ȧ(t) is
a constant, then

(1) Ä(t)⊤A(t) = −Ȧ(t)⊤Ȧ(t) and Ä(t)⊤A(t) = −A(t)⊤Ä(t);
(2) Ȧ(t)⊤Ȧ(t) = −(A(t)⊤Ȧ(t))2;
(3) Ä(t)⊤A(t) = (A(t)⊤Ȧ(t))2 = −A(t)⊤Ä(t).

These facts should not surprise us in view of Proposition 4.5 below.

We conclude this technical section with a curious remark. As shown by the
following example:

A(t) =
⎛⎜⎜⎜⎝

0 0 sin t − cos t
0 0 cos t sin t

cos t sin t 0 0
− sin t cos t 0 0

⎞⎟⎟⎟⎠
,

even for matrix functions as in Proposition 4.3, one may have

A(t)⊤Ȧ(t) ≠ A(t)Ȧ(t)⊤.
Nevertheless, one can prove the following fact:

Proposition 4.5. Let t ↦ A(t) be a C2 square-matrix-valued function. Assume

that A(t) is orthogonal for all t. Then A(t)⊤Ȧ(t) is constant if and only if so is

A(t)Ȧ(t)⊤.
Proof. Let us first prove that if M ∶= A(t)Ȧ(t)⊤ is constant then A(t)⊤Ȧ(t) is
constant as well. As above, for the sake of simplicity, we drop the explicit indication
of the dependence of A on t.

Clearly, we have ȦA⊤ =M⊤ and, since Proposition 4.3 yields AÄ⊤ =M2, we also
have AÄ⊤ = (M2)⊤. Now, using these facts we get

[ d
dt
(AT Ȧ)]⊤ = A⊤A [ d

dt
(A⊤Ȧ)]⊤A⊤A = A⊤A (Ȧ⊤Ȧ + Ä⊤A)A⊤A

= [Ȧ⊤MȦ +A⊤(M2)⊤A]A⊤A = [A⊤MM⊤
+A⊤(M2)⊤]A

= A⊤(MM⊤
+ (M2)⊤)A = A⊤(MM⊤

+M2)⊤A
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Observe also that

MM⊤
+M2 = AȦ⊤ (ȦA⊤ +AȦ⊤) = AȦ⊤ [ d

dt
(AA⊤)] = 0,

because AA⊤ ≡ I. Thus, d
dt
(AT Ȧ) = 0, which imply that A(t)⊤Ȧ(t) is a constant

matrix.
Conversely, if A(t)⊤Ȧ(t) is constant, a similar proof shows that A(t)Ȧ(t)⊤ is

constant too. �
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