Calcolo delle Probabilità –2016-2017 Quinto Appello – 2 ottobre 2017

Domanda 1) (8 punti) Un'urna contiene 2 palline bianche e 4 palline rosse. Si estraggono (senza reimbussola-
mento) 2 palline.
Se le due palline estratte sono dello stesso colore si lanciano due dadi, altrimenti si lancia un solo dado.
Calcolare la probabilità di ottenere punteggio totale uguale a 6 nel lancio dei dadi.
Sapendo di aver ottenuto punteggio totale uguale a 6, calcolare la probabilità di aver estratto due palline bianche.
Svolgimento

- n. 13

Domanda 2) (9 punti) La v.a. (X,Y) ha distribuzione assolutamente continua con densità

$$f(x,y) = \begin{cases} 2c & x^2 + y^2 \le 1, & x \ge 0, & y \ge 0, \\ c & 1 < x^2 + y^2 \le 4, & x \ge 0, & y \ge 0, \\ 0 & \text{altrimenti.} \end{cases}$$

Calcolare il valore di c, la distribuzione congiunta e le distribuzioni marginali della v.a. $(R,T) := \left(\sqrt{X^2 + Y^2}, \frac{Y}{X}\right)$. R e T sono indipendenti?

Svolgimento

n. 13

Domanda 3)	(9 punti)	Le v.a. X_1	e X_2 sono	i.i.d. e	hanno d	listribuzione	binomiale	di paramet	ri $n \in p$.	Sia
$Y := X_1 + X_2.$	Calcolare \mathbb{F}	$\mathbb{E}[X_1 Y].$								
Svolgimento										

n. 13

Domanda 4) (6 punti) La v.a. X ha distribuzione esponenziale di parametro λ . Sia $Y:=X^{-1}$. Calcolare la
distribuzione di Y e, se esisono, valore atteso e varianza.
,,,
Svolgimento

- n. 13