
Calcolo delle Probabilità –2015-2016 Secondo Appello – 9 Febbraio 2016

M	ลา	tri	CO	la

Nome e Cognome

Domanda 1) Un'urna contiene N monete distinte, numerate da 1 a N . La probabilità che, lanciando la moneta i -esima si ottenga testa è $\frac{i}{N}$. Si estrae una moneta \underline{a} caso e la si lancia 2 volte. Sapendo che al primo lancio si è ottenuto testa, quanto vale la probabilità (condizionata) di ottenere testa anche al secondo lancio?
Svolgimento

Domanda 2) sul piano cartesiano Oxy si consideri il triangolo isoscele di vertice (0,1), con base sull'asse delle ascisse e con angolo al vertice di ampiezza 2Θ . A partire dal vertice (0,1), scegliendo <u>a caso</u> una direzione $X \in (-\Theta,\Theta)$ contenuta nell'angolo al vertice, si traccia una semiretta che interseca la base del triangolo in un punto L. Determinare la distribuzione della v.a. L. Che distribuzione si ottiene quando $\Theta \to \left(\frac{\pi}{2}\right)^-$?

Svolgimento

Domanda 3) Le v.a. X e Y sono i.i.d. e seguono la distribuzione gaussiana standard. Calcolare distribuzione, valore atteso e varianza della v.a. $D_2 := \sqrt{X^2 + Y^2}$.								
							•	
${f Svolgimento}$								
J								

$$f_{(X,Y)}(x,y) = \frac{2}{\pi R^2} \mathbb{1}_S(x,y), \qquad S := \{(x,y) \in \mathbb{R}^2 \colon x^2 + y^2 \le R^2, \ x \ge 0\}.$$

Calcolare $f_{X|Y}(x|y)$ e $\mathbb{E}[X|Y=y]$.

.....

Svolgimento