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Plato’s allegory of the cave

[...] they see only their own shadows, or the shadows of one another, which the
fire throws on the opposite wall of the cave [...]. To them, I said, the truth would
be literally nothing but the shadows of the images.

Plato, The allegory of the cave,

Book VII of the Republic
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Study of lightlike dimensional reduction

Useful for clarifying
m the connection between relativistic and non-relativistic (classical) physics,
m the causality properties of gravitational waves,

m the problem of existence of solutions to the Hamilton-Jacobi equation and
other problems in Lagrangian mechanics.

These apparently independent problems are strongly related as the study of
lightlike dimensional reduction proves.
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Where all it started: Brinkmann - Eisenhart’s spacetime

m Let E=T x Q, T =R, be a classical d + 1-dimensional extended
configuration space of coordinates (¢, q). Let a; be a positive definite time
dependent metric on S, and b; a time dependent 1-form field on S. Let
V(t,q) be a time dependent scalar field on S.

m In 1929 Eisenhart pointed out that the trajectories of a Lagrangian problem

Lt qd) = ordsd) +be(d) = V(t,),

t1
s L(t,q,¢)dt =0, q(to) = qo, q(t1) = a1

to
may be obtained as the projection of the spacelike geodesics of a
d 4 2-dimensional manifold M = E x Y, Y = R, of metric

ds? = a; — dt ® (dy — by) — (dy — by) @ dt — 2V dt?,

m The considered Lagrangian is the most general which comes from Newtonian
mechanics by considering holonomic constraints.

m Eisenhart had in mind Jacobi’s metric (E — V)a, and Jacobi’s action principle
which holds for time independent Lagrangians and b = 0.
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Brinkmann -Eisenhart’s spacetime II

m The Eisenhart metric takes its simplest and most symmetric form in the case
of a free particle in Euclidean space ap. = dpe, be = 0, V = const.
Remarkably, in this case the Eisenhart metric becomes the Minkowski metric.

m The Eisenhart metric is Lorentzian but Eisenhart did not give to this fact a
particular meaning.




Constructing the Brinkmann - Eisenhart spacetime

m The vector field n = 9/0y is covariantly constant and lightlike.
It is better to proceed in steps starting from (M, g)

m Assume n is Killing and lightlike in such a way that the quotient projection
m: M — E gives a principal bundle over R.

m n is twist-free, n A dn = 0, = E foliates into simultaneity slices, n = —dt.

m n is covariantly constant = the foliation takes a natural ‘time parameter’ -
the classical time n = —dt.

m Connection on principal bundles 7 : Ny — Q: = Newtonian flow on FE.
m Curvature = Coriolis forces.
m If the curvature ¢ vanishes the observers are non-rotating.

The Brinkmann-Eisenhart metric
ds? =a; —dt ® (dy — bt) — (dy — by) @ dt — 2V dt?,

on M = E xXY,Y =R, describes the most general spacetime with a covariantly
constant lightlike field (Bargmann structure, generalized wave metric). Brinkmann
proved this result locally. The space metric a and 1-form field b are fixed only if
the coordinate system is fixed and this is done by choosing a Newtonian flow on E
which defines the space Q.
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A figure
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Some comments

m Let n be a lightlike Killing vector field on the spacetime (M, g). In any
spacetime dimension n A dn = 0 if and only if R,,n*n" = 0.

m Define the Newtonian flow as a vector field v on F such that d¢[v] = 1. The
Newtonian flows and the connections w¢ on the bundles 7 : Ny — Q¢ are in
one-to-one relation through the formula w¢(-) = —g(-, V)|n,-

m The metric a; on the space sections Q¢ is defined by a:(w,v) = g(W, V).

m Given a 1l-parameter family of sections o : Q — N; of the 1-parameter family
of principal bundles 7; : Ny — Q4, the potential by reads, by = —o;ws.
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Lightlike lift I

Assume from now on that M =T x Q X Y with T'~ Y ~ R is given the metric
ds? =a; —dt ® (dy — by) — (dy — be) ® dt — 2V d¢e2.

Every C' curve (t,q(t)) on E =T x Q is the projection of a lightlike curve on
(M, g), v(t) = (t,q(t), y(t)) where

t1
y(t) =yo + /t [Sat(d @) +be(9) = VIt @)ldt = yo + Seq () [4l(0,4)]-
0

this result follows from

9(,¥) = ai(d,9) — 2(g — be[d]) — 2V = 2(L — ),

Conversely, every lightlike curve on (M, g) with tangent vectors nowhere
proportional to n = 8/8y projects on a C! curve on E.
Also, given a timelike curve v we have necessarily

Y(t) > yo + Seq,e(tydl[0,4]-
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The light lift II

Y

JH(mo) N7 (er)

€1

€0
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The light lift III

Every geodesic on (M, g) not coincident with a flow line of n admits the function ¢
as affine parameter and once so parametrized projects on a solution to the E-L
equations. The light lift of a solution to the E-L equation is a lightlike geodesic.

It is based on

A1 ty
Tl =5 [ oty an= 3 [ i)

[ wta.aw) i@t

to
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The least action

also called Hamilton’s principal function is S : E X E — [—o0, +00] given by

S(eo,e1) = inf  Sey,eqlal, for to < t1,
geC!
€g.e1
S(eo,e1) =0, for to =t1 and qo = q1,

S(eo,e1) = +oo, elsewhere.




Causality relations I

Proposition

Let o = (e0,yo0) € M, it holds

I (z0) = {=1 :y1 — yo > S(eo, e1) and to < t1},
JT(z0) C {z1:y1 —yo > S(eo,e1)},
ET(x0) C 72o U{z1: 41 — yo = S(eo,€1)}-

Analogous past versions hold.
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The statement

Let 21 € Jt(x0) and t¢ < t1, thus in particular y1 — yo > S(eo,e1). Let

e(t) = (t,q(t)) be a C! curve which is the projection of some C'! causal curve
connecting zg to z1 then y; — yo > Seg,eq [g]. Among all the C! causal curves
z(t) = (¢,q(t),y(t)), connecting zo to z1, which project on e(t), the causal curve

Y(t) = (t,q(t), y(t)) with

t—to
t1 —to

Y(t) = yo + Se,et) [4lito,4] + (Y1 — Yo — Seg,eq a]) (1)

is the one and the only one that maximizes the Lorentzian length. The maximum
is

l(’Y) = {2(y1 — Yo — Seo,e1 [q])(tl - tO)}l/Q' (2)
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Let n(t) = (t,q(t),w(t)) be a C* causal curve connecting zg to x1, then since it is
causal by Eq. —g(7,7) = 2(w — L), w > L and integrating y1 — yo > Seg,e; [4]-
The curve v is causal because (use Eq. —g(%,%) =2(y — L))

. 2
—9(%,%) = (y1 — Yo — Seg,eq[q]) =0
—to

taking the square root and integrating one gets

1(7) = {2(y1 — Yo — Seq.e: [a]) (t1 — t0)}'/2.

If 4 = (t,q(t), §(t)) is another C! timelike curve connecting zo to x1 and
projecting on e(t)

_9(777) = (yl — Yo — 360,61 [(] ]dt

t1—to

Using the Cauchy-Schwartz inequality ftt()l[—g('Ly,qL/)}dt > (t1 — to) " L(7)?,
remplacing in the above equation, taking the square root and integrating

I(v) > l(%), thus v is longer than 4. In order to prove the uniqueness note that the
equality sign in () > (%) holds iff it holds in the Cauchy-Schwarz inequality
which is the case iff g(’.y7 ’y) = const., that is iff g — L = const. which integrated,
once used the suitable boundary conditions, gives Eq. (1).

LMPT Tours 2010 A connection between Lorentzian distance . ..



Lorentzian distance vs mechanical lest action

Corollary

Let zo,z1 € M, zo = (e0,%0), 1 = (e1,y1) then if z1 € JT (x0),

d(zo, 1) = v/2[y1 — yo — S(eo, e1)](t1 — to)- (3)

In particular, S(eg,e1) = —oo iff d(zg, z1) = +o0.

The triangle inequality

The function S is upper semi-continuous everywhere but on the diagonal of E X E
and satisfies the triangle inequality: for every ep,e1,e2 € E

S(eo,e2) < S(eo,e1) + S(e1,e2),

with the convention that (+o00) + (—o00) = +o0.
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Relation between the triangle inequalities

What is the relation between the reverse triangle inequality satisfied by d and the
usual triangle inequality satisfied by S?

An abstract framework

Suppose on X you are given a function s : X — (—o00, +00] such that s(z,z) = 0.
On the cartesian product X X R define the relation

(I’a) S (y7 b) if b—a Z s(m,y)

Assume futhermore that < is a total preorder on X and that ¢t : X — R is an
utility function, i.e. z <y < t(z) < t(y). Finally, let = f y = s(z,y) = +oo be
the compatibility condition of the total preorder with s. Define

d: (X xR)?2 — [0, +o0] by

d((z,a), (y,b)) = V2[b — a — s(z, y)](t(y) — t(=)) (4)
if (z,a) < (y,b) and 0 otherwise. Given z1,z2,z3 € X, the reverse triangle
inequality

d((z1,a1), (x2, a2)) + d((z2, a2), (z3,a3)) < d((z1,a1), (3, a3)) (5)

holds for every triple (z1,a1) < (z2,a2) < (z3,a3) if and only if for all z,y,z € X,
s(z, 2) < s(z,y) + s(y, 2).
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The causal ladder of spacetimes

Global hyperbolicity
U

Causal simplicity

3

Causal continuity

Stable causality
4

Strong causality

I

Distinction

U
Causality

U
Chronology

How does it change for our case? Can this properties be related with properties of
the Lagrangian problem and in particular of the least action S7
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Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian
distance d

Global hyperbolicity

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is finite.
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Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian
distance d

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is finite.

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is continuous.
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Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian
distance d

Global hyperbolicity

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is finite.

Global hyperbolicity II

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is continuous.

Causal simplicity

A strongly causal spacetime is causally simple if and only if whatever the chosen
conformal factor d is continuous wherever it vanishes.

and d and S are related...
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The answer

Comy Eﬂgess

Global hyperbolicity:

» (i) Segeys to < 1, Is coercive.

(i) Slep,e1), tp < £y, is finite, |-

U

Causal simplic

¥

> (a) & attains its infimum S wher-
ever § is finite,

H (b) S is lower semi-continuous. <

U

Causal continuity:

liminf S(eg, e) = liminf S{e, e;1),
Ee—E] E—EQ

and this quantity vanishes for ep=ey.




4

Stable/Strong causality:

S is lower semi-continuous on the di-
agonal.

Distinction:

liminf §(¢, e} = liminf S(e, &) = 0.

(M, g) is always causal.




Hamilton-Jacobi equation

Locally the Lorentzian distance d(xo, z) satisfies the eikonal equation
g9(Vd,Vd)+1=0,

while S(eo, e) satisfies the Hamilton-Jacobi equation. They are related because,
using the relation between S and d

2(t —t0)? | D 1

9(Vd,Vd) +1==—3 [—+f 1(dS — by, dS — by) + V).
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Viscosity solutions of the Hamilton-Jacobi equation

The function u : E — R is a viscosity solution of the Hamilton-Jacobi equation if

m It is a viscosity subsolution: for every (t,q) € E there is a C' function
¢ : E — R such that u — ¢ has a local maximum at e and at e

atﬁa'i'H(t: q, Dqﬁp) <0.

m It is a viscosity supersolution: for every (t,q) € E there is a C"* function
@ : E — R such that u — ¢ has a local minimum at e and at e

6t</’+H(t,fI» DqSO) > 0.
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Viscosity solutions and the causal future

The slices of the causal future of the initial condition give a viscosity solution.




Lax-Oleinik semigroup

This solution is that of the Lax-Oleinik semigroup

t
u(t,q) = inf  {u(to,qo0) +/t L(t, o, &)dt}

q0€Q,aeC!




Conclusions

m The study of spacetimes admitting a parallel null vector is tightly related
with the study of Lagrangian mechanical systems.

m In this framework there is a simple relation between the Lorentzian distance
and the least action.

m The causality properties of the spacetime are connected with lower
semi-continuity properties of the least action.

m Tonelli’s theorem on the existence of minimizers is basically the statement
that global hyperbolicity implies causal simplicity.

m The Hamilton-Jacobi equation and the Lax-Oleinik semigroup are nothing
but the causal relation in disguise.
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