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Plato’s allegory of the cave

[. . . ] they see only their own shadows, or the shadows of one another, which the
fire throws on the opposite wall of the cave [. . . ]. To them, I said, the truth would

be literally nothing but the shadows of the images.
Plato, The allegory of the cave,

Book VII of the Republic
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Study of lightlike dimensional reduction

Useful for clarifying

the connection between relativistic and non-relativistic (classical) physics,

the causality properties of gravitational waves,

the problem of existence of solutions to the Hamilton-Jacobi equation and
other problems in Lagrangian mechanics.

These apparently independent problems are strongly related as the study of
lightlike dimensional reduction proves.
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Where all it started: Brinkmann - Eisenhart’s spacetime

Let E = T ×Q, T = R, be a classical d+ 1-dimensional extended
configuration space of coordinates (t, q). Let at be a positive definite time
dependent metric on S, and bt a time dependent 1-form field on S. Let
V (t, q) be a time dependent scalar field on S.

In 1929 Eisenhart pointed out that the trajectories of a Lagrangian problem

L(t, q, q̇) =
1

2
at(q̇, q̇) + bt(q̇)− V (t, q),

δ

∫ t1

t0

L(t, q, q̇)dt = 0, q(t0) = q0, q(t1) = q1

may be obtained as the projection of the spacelike geodesics of a
d+ 2-dimensional manifold M = E × Y , Y = R, of metric

ds2 = at − dt⊗ (dy − bt)− (dy − bt)⊗ dt− 2V dt2,

The considered Lagrangian is the most general which comes from Newtonian
mechanics by considering holonomic constraints.

Eisenhart had in mind Jacobi’s metric (E − V )a, and Jacobi’s action principle
which holds for time independent Lagrangians and b = 0.
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Brinkmann -Eisenhart’s spacetime II

The Eisenhart metric takes its simplest and most symmetric form in the case
of a free particle in Euclidean space abc = δbc, bc = 0, V = const.
Remarkably, in this case the Eisenhart metric becomes the Minkowski metric.

The Eisenhart metric is Lorentzian but Eisenhart did not give to this fact a
particular meaning.
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Constructing the Brinkmann - Eisenhart spacetime

The vector field n = ∂/∂y is covariantly constant and lightlike.

It is better to proceed in steps starting from (M, g)

Assume n is Killing and lightlike in such a way that the quotient projection
π : M → E gives a principal bundle over R.

n is twist-free, n ∧ dn = 0, ⇒ E foliates into simultaneity slices, n = −ψdt.

n is covariantly constant ⇒ the foliation takes a natural ‘time parameter’ -
the classical time n = −dt.

Connection on principal bundles πt : Nt → Qt ⇒ Newtonian flow on E.

Curvature ⇒ Coriolis forces.

If the curvature Ωt vanishes the observers are non-rotating.

The Brinkmann-Eisenhart metric

ds2 = at − dt⊗ (dy − bt)− (dy − bt)⊗ dt− 2V dt2,

on M = E × Y , Y = R, describes the most general spacetime with a covariantly
constant lightlike field (Bargmann structure, generalized wave metric). Brinkmann
proved this result locally. The space metric a and 1-form field b are fixed only if
the coordinate system is fixed and this is done by choosing a Newtonian flow on E
which defines the space Q.
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Some comments

Let n be a lightlike Killing vector field on the spacetime (M, g). In any
spacetime dimension n ∧ dn = 0 if and only if Rµνnµnν = 0.

Define the Newtonian flow as a vector field v on E such that dt[v] = 1. The
Newtonian flows and the connections ωt on the bundles πt : Nt → Qt are in
one-to-one relation through the formula ωt(·) = −g(·, V )|Nt .

The metric at on the space sections Qt is defined by at(w, v) = g(W,V ).

Given a 1-parameter family of sections σt : Q→ Nt of the 1-parameter family
of principal bundles πt : Nt → Qt, the potential bt reads, bt = −σ∗t ωt.
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Lightlike lift I

Assume from now on that M = T ×Q× Y with T ' Y ' R is given the metric

ds2 = at − dt⊗ (dy − bt)− (dy − bt)⊗ dt− 2V dt2.

Every C1 curve (t, q(t)) on E = T ×Q is the projection of a lightlike curve on
(M, g), γ(t) = (t, q(t), y(t)) where

y(t) = y0 +

∫ t

t0

[
1

2
at(q̇, q̇) + bt(q̇)− V (t, q)]dt = y0 + Se0,e(t)[q|[0,t]].

this result follows from

g(γ̇, γ̇) = at(q̇, q̇)− 2(ẏ − bt[q̇])− 2V = 2(L− ẏ),

Conversely, every lightlike curve on (M, g) with tangent vectors nowhere
proportional to n = ∂/∂y projects on a C1 curve on E.
Also, given a timelike curve γ we have necessarily

y(t) > y0 + Se0,e(t)[q|[0,t]].
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The light lift II
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The light lift III

Proposition

Every geodesic on (M, g) not coincident with a flow line of n admits the function t
as affine parameter and once so parametrized projects on a solution to the E-L
equations. The light lift of a solution to the E-L equation is a lightlike geodesic.

It is based on

I[η] =
1

2

∫ λ1

λ0

g(η′, η′) dλ =
1

2

∫ t1

t0

g(η̇, η̇)(t′) dt

=

∫ t1

t0

[L(t, q(t), q̇(t))− ẏ] (t′) dt.
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The least action

also called Hamilton’s principal function is S : E × E → [−∞,+∞] given by

S(e0, e1) = inf
q∈C1

e0,e1

Se0,e1 [q], for t0 < t1,

S(e0, e1) = 0, for t0 = t1 and q0 = q1,

S(e0, e1) = +∞, elsewhere.
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Causality relations I

Proposition

Let x0 = (e0, y0) ∈M , it holds

I+(x0) = {x1 : y1 − y0 > S(e0, e1) and t0 < t1},

J+(x0) ⊂ {x1 : y1 − y0 ≥ S(e0, e1)},

E+(x0) ⊂ rx0 ∪ {x1 : y1 − y0 = S(e0, e1)}.

Analogous past versions hold.

LMPT Tours 2010 A connection between Lorentzian distance . . . 13/25



A lemma

The statement

Let x1 ∈ J+(x0) and t0 < t1, thus in particular y1 − y0 ≥ S(e0, e1). Let
e(t) = (t, q(t)) be a C1 curve which is the projection of some C1 causal curve
connecting x0 to x1 then y1 − y0 ≥ Se0,e1 [q]. Among all the C1 causal curves
x(t) = (t, q(t), y(t)), connecting x0 to x1, which project on e(t), the causal curve
γ(t) = (t, q(t), y(t)) with

y(t) = y0 + Se0,e(t)[q|[t0,t]] +
t− t0
t1 − t0

(y1 − y0 − Se0,e1 [q]) (1)

is the one and the only one that maximizes the Lorentzian length. The maximum
is

l(γ) = {2(y1 − y0 − Se0,e1 [q])(t1 − t0)}1/2. (2)
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The proof

Let η(t) = (t, q(t), w(t)) be a C1 causal curve connecting x0 to x1, then since it is
causal by Eq. −g(η̇, η̇) = 2(ẇ − L), ẇ ≥ L and integrating y1 − y0 ≥ Se0,e1 [q].
The curve γ is causal because (use Eq. −g(γ̇, γ̇) = 2(ẏ − L))

−g(γ̇, γ̇) =
2

t1−t0
(y1 − y0 − Se0,e1 [q]) ≥ 0,

taking the square root and integrating one gets

l(γ) = {2(y1 − y0 − Se0,e1 [q])(t1 − t0)}1/2.

If γ̃ = (t, q(t), ỹ(t)) is another C1 timelike curve connecting x0 to x1 and
projecting on e(t)

−g(γ̇, γ̇) =
2

t1−t0
(y1 − y0 − Se0,e1 [q]) =

1

t1−t0

∫ t1

t0

[−g( ˙̃γ, ˙̃γ)]dt.

Using the Cauchy-Schwartz inequality
∫ t1
t0

[−g( ˙̃γ, ˙̃γ)]dt ≥ (t1 − t0)−1l(γ̃)2,

remplacing in the above equation, taking the square root and integrating
l(γ) ≥ l(γ̃), thus γ is longer than γ̃. In order to prove the uniqueness note that the
equality sign in l(γ) ≥ l(γ̃) holds iff it holds in the Cauchy-Schwarz inequality
which is the case iff g( ˙̃γ, ˙̃γ) = const., that is iff ˙̃y − L = const. which integrated,
once used the suitable boundary conditions, gives Eq. (1).
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Lorentzian distance vs mechanical lest action

Corollary

Let x0, x1 ∈M , x0 = (e0, y0), x1 = (e1, y1) then if x1 ∈ J+(x0),

d(x0, x1) =
√

2[y1 − y0 − S(e0, e1)](t1 − t0). (3)

In particular, S(e0, e1) = −∞ iff d(x0, x1) = +∞.

The triangle inequality

The function S is upper semi-continuous everywhere but on the diagonal of E ×E
and satisfies the triangle inequality: for every e0, e1, e2 ∈ E

S(e0, e2) ≤ S(e0, e1) + S(e1, e2),

with the convention that (+∞) + (−∞) = +∞.
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Relation between the triangle inequalities

What is the relation between the reverse triangle inequality satisfied by d and the
usual triangle inequality satisfied by S?

An abstract framework

Suppose on X you are given a function s : X → (−∞,+∞] such that s(x, x) = 0.
On the cartesian product X × R define the relation

(x, a) ≤ (y, b) if b− a ≥ s(x, y)

Assume futhermore that � is a total preorder on X and that t : X → R is an
utility function, i.e. x � y ⇔ t(x) ≤ t(y). Finally, let x � y ⇒ s(x, y) = +∞ be
the compatibility condition of the total preorder with s. Define
d : (X × R)2 → [0,+∞] by

d((x, a), (y, b)) =
√

2[b− a− s(x, y)](t(y)− t(x)) (4)

if (x, a) ≤ (y, b) and 0 otherwise. Given x1, x2, x3 ∈ X, the reverse triangle
inequality

d((x1, a1), (x2, a2)) + d((x2, a2), (x3, a3)) ≤ d((x1, a1), (x3, a3)) (5)

holds for every triple (x1, a1) ≤ (x2, a2) ≤ (x3, a3) if and only if for all x, y, z ∈ X,
s(x, z) ≤ s(x, y) + s(y, z).
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The causal ladder of spacetimes

Global hyperbolicity
⇓

Causal simplicity
⇓

Causal continuity
⇓

Stable causality
⇓

Strong causality
⇓

Distinction
⇓

Causality
⇓

Chronology

How does it change for our case? Can this properties be related with properties of
the Lagrangian problem and in particular of the least action S?
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Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian
distance d

Global hyperbolicity

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is finite.

Global hyperbolicity II

A strongly causal spacetime is globally hyperbolic if and only if whatever the
chosen conformal factor d is continuous.

Causal simplicity

A strongly causal spacetime is causally simple if and only if whatever the chosen
conformal factor d is continuous wherever it vanishes.

and d and S are related...
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The answer
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The answer II

(M, g) is always causal.
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Hamilton-Jacobi equation

Locally the Lorentzian distance d(x0, x) satisfies the eikonal equation

g(∇d,∇d) + 1 = 0,

while S(e0, e) satisfies the Hamilton-Jacobi equation. They are related because,
using the relation between S and d

g(∇d,∇d) + 1 =
2(t− t0)2

d2
[
∂S

∂t
+

1

2
a−1
t (dS − bt, dS − bt) + V ].
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Viscosity solutions of the Hamilton-Jacobi equation

The function u : E → R is a viscosity solution of the Hamilton-Jacobi equation if

It is a viscosity subsolution: for every (t, q) ∈ E there is a C1 function
ϕ : E → R such that u− ϕ has a local maximum at e and at e

∂tϕ+H(t, q,Dqϕ) ≤ 0.

It is a viscosity supersolution: for every (t, q) ∈ E there is a C1 function
ϕ : E → R such that u− ϕ has a local minimum at e and at e

∂tϕ+H(t, q,Dqϕ) ≥ 0.
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Viscosity solutions and the causal future

The slices of the causal future of the initial condition give a viscosity solution.
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Smoothness properties follow from theorems in Lorentzian geometry.
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Lax-Oleinik semigroup

This solution is that of the Lax-Oleinik semigroup

u(t, q) = inf
q0∈Q,α∈C1

{u(t0, q0) +

∫ t

t0

L(t, α, α̇)dt}
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Conclusions

The study of spacetimes admitting a parallel null vector is tightly related
with the study of Lagrangian mechanical systems.

In this framework there is a simple relation between the Lorentzian distance
and the least action.

The causality properties of the spacetime are connected with lower
semi-continuity properties of the least action.

Tonelli’s theorem on the existence of minimizers is basically the statement
that global hyperbolicity implies causal simplicity.

The Hamilton-Jacobi equation and the Lax-Oleinik semigroup are nothing
but the causal relation in disguise.

LMPT Tours 2010 A connection between Lorentzian distance . . . 26/25


