From causality to time and back

Ettore Minguzzi

Università Degli Studi Di Firenze

ERE09, Bilbao, September 10, 2009

based on

- Time functions as utilities Archive: 0909.0890
- K-causality coincides with stable causality Commun. Math. Phys. 290 (2009) 239-248

Let $\Delta = \{(p, p) : p \in M\}$

Preorder

 $R \subset M \times M$ is a (reflexive) preorder on M if it is

- reflexive: $\Delta \subset R$,
- transitive: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$,

Let $\Delta = \{(p, p) : p \in M\}$

Preorder

 $R \subset M \times M$ is a (reflexive) preorder on M if it is

- reflexive: $\Delta \subset R$,
- transitive: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$,

Partial order

R is a (reflexive) partial order on M if it is a preorder and it is

• antisymmetric: $(x, y) \in R$ and $(y, x) \in R \Rightarrow x = y$

Let $\Delta = \{(p, p) : p \in M\}$

Preorder

 $R \subset M \times M$ is a (reflexive) preorder on M if it is

- reflexive: $\Delta \subset R$,
- transitive: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$,

Partial order

R is a (reflexive) partial order on M if it is a preorder and it is

• antisymmetric: $(x, y) \in R$ and $(y, x) \in R \Rightarrow x = y$

Total preorder

A preorder which is

• total: $(x, y) \in R$ or $(y, x) \in R$

Every two elements are comparable.

Let $\Delta = \{(p, p) : p \in M\}$

Preorder

 $R \subset M \times M$ is a (reflexive) preorder on M if it is

- reflexive: $\Delta \subset R$,
- transitive: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$,

Partial order

R is a (reflexive) partial order on M if it is a preorder and it is

 \blacksquare antisymmetric: $(x,y)\in R$ and $(y,x)\in R \Rightarrow x=y$

Total preorder

A preorder which is

• total: $(x, y) \in R$ or $(y, x) \in R$

Every two elements are comparable.

Total order

A partial order which is total.

• chronologically, $p \ll q$, if there is a future directed timelike curve from p to q,

- \blacksquare chronologically, $p \ll q,$ if there is a future directed timelike curve from p to q,
- causally, $p \leq q$, if there is a future directed causal curve from p to q or p = q,

- chronologically, $p \ll q$, if there is a future directed timelike curve from p to q,
- causally, $p \leq q$, if there is a future directed causal curve from p to q or p = q,
- horismotically, $p \rightarrow q$, if there is a maximizing lightlike geodesic segment connecting p to q or p = q.

- chronologically, $p \ll q$, if there is a future directed timelike curve from p to q,
- causally, $p \leq q$, if there is a future directed causal curve from p to q or p = q,
- horismotically, $p \rightarrow q$, if there is a maximizing lightlike geodesic segment connecting p to q or p = q.

They can be regarded as relations on M i.e. as subsets of $M \times M$

$$\begin{split} I^+ &= \{(p,q) \in M \times M : p \ll q\}, & \text{chronology relation} \\ J^+ &= \{(p,q) \in M \times M : p \leq q\}, & \text{causal relation} \\ E^+ &= \{(p,q) \in M \times M : p \rightarrow q\} = J^+ \backslash I^+, & \text{horismos relation} \end{split}$$

 I^+ and J^+ are transitive. I^+ is open but J^+ and E^+ are not necessarily closed.

(M,g) is stably causal if there is g' > g with (M,g') causal.

Here g' > g if the light cones of g are everywhere strictly larger than those of g.

(M,g) is stably causal if there is g' > g with (M,g') causal.

Here g' > g if the light cones of g are everywhere strictly larger than those of g. None of I^+ , J^+ or E^+ are both closed and transitive

Seifert's relation $J_S^+ = \bigcap_{g'>g} J_g^+$ (1971)

 J_S^+ is closed, transitive and contains J^+ .

(M,g) is stably causal if there is g' > g with (M,g') causal.

Here g' > g if the light cones of g are everywhere strictly larger than those of g. None of I^+ , J^+ or E^+ are both closed and transitive

Seifert's relation $J_S^+ = \bigcap_{g'>g} J_g^+$ (1971)

 J_S^+ is closed, transitive and contains J^+ .

The spacetime is stably causal iff J_S^+ is antisymmetric.

(M,g) is stably causal if there is g' > g with (M,g') causal.

Here g' > g if the light cones of g are everywhere strictly larger than those of g. None of I^+ , J^+ or E^+ are both closed and transitive

Seifert's relation $J_S^+ = \bigcap_{g' > g} J_g^+$ (1971)

 J_S^+ is closed, transitive and contains J^+ .

The spacetime is stably causal iff J_S^+ is antisymmetric.

Sorkin and Woolgar's relation K^+ (1996)

The smallest closed and transitive relation which contains J^+ . A spacetime is K-causal if K^+ is antisymmetric. It is difficult to work with K^+ .

(M,g) is stably causal if there is g' > g with (M,g') causal.

Here g' > g if the light cones of g are everywhere strictly larger than those of g. None of I^+ , J^+ or E^+ are both closed and transitive

Seifert's relation $J_S^+ = \bigcap_{q'>q} J_g^+$ (1971)

 J_S^+ is closed, transitive and contains J^+ .

The spacetime is stably causal iff J_S^+ is antisymmetric.

Sorkin and Woolgar's relation K^+ (1996)

The smallest closed and transitive relation which contains J^+ . A spacetime is *K*-causal if K^+ is antisymmetric. It is difficult to work with K^+ .

By definition $K^+ \subset J_S^+$; do they coincide?

No, but

• K-causality is equivalent to stable causality and in this case $K^+ = J_S^+$.

Time and stable causality

Time functions and temporal functions

Semi-time function: a continuous real function such that $p \ll q \Rightarrow t(p) < t(q)$. Time function: a continuous real function such that $p < q \Rightarrow t(p) < t(q)$. Temporal function: a C^1 time function with timelike gradient.

Time functions and temporal functions

Semi-time function: a *continuous* real function such that $p \ll q \Rightarrow t(p) < t(q)$. Time function: a *continuous* real function such that $p < q \Rightarrow t(p) < t(q)$. Temporal function: a C^1 time function with timelike gradient.

Relation with stable causality

Hawking 1968	Temporal function \Rightarrow stable causality
Hawking 1968	Stable causality \Rightarrow time function
Bernal and Sánchez 2004	Time function \Rightarrow temporal function

So to prove "Time function \Rightarrow stable causality" you pass thorough a smooth time function.

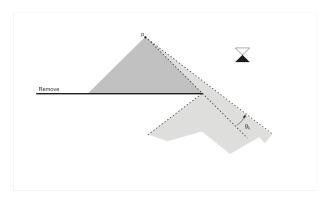
Hawking's averaging method

Geroch's time $\mu(I^-(x))$ is only lower semi-continuous.

• Stable causality \Rightarrow time function.

Let $g_{\lambda} = (1 - \frac{\lambda}{2}) + \frac{\lambda}{2}\tilde{g}$ with $\tilde{g} > g$, define

$$t(x) = \int_0^1 \mu(I^-_{(M,g_\lambda)}(x)) d\lambda$$



Other route: prove directly

- (i) The existence of a time function implies K-causality (skip smoothability),
- (ii) K-causality implies the existence of a time function (skip Hawking's averaging technique).
- (i): Is possible and somewhat technical.
- (ii): The idea behind (ii) is that the result holds because K^+ is closed.

Other route: prove directly

- (i) The existence of a time function implies K-causality (skip smoothability),
- (ii) K-causality implies the existence of a time function (skip Hawking's averaging technique).

(i): Is possible and somewhat technical.

(ii): The idea behind (ii) is that the result holds because K^+ is closed.

Utility theory

An individual has preferences (an apple over an orange) on an abstract space of alternatives A. These preferences give a preorder R. Write $x \sim_R y$ if $x \leq_R y$ and $y \leq_R x$, and $x <_R y$ if $x \leq_R y$ and not $y \leq_R x$. Daniel Bernoulli (1728) introduced the concept of *utility*:

 $^{\prime\prime}x \sim_R y \Rightarrow u(x) = u(y)^{\prime\prime} \ \, \text{and} \ \ ^{\prime\prime}x <_R y \Rightarrow u(x) < u(y).^{\prime\prime}$

to quantify preference and solve S. Petersburg paradox.

Let A be a topological space. The problem of establishing the existence of a *continuous* utility is formally similar to that of establishing the existence of a time function, but much older. Mathematicians tried every condition on R. Finally they reached (Levin's theorem) the conclusion that if R is closed then u exists!

Utilities for I^+

In a chronological spacetime the utilities of the relation I^+ are the semi-time functions.

Utilities for K^+

In a K-causal spacetime the utilities of the relation K^+ are the time functions.

Utilities for I^+

In a chronological spacetime the utilities of the relation I^+ are the semi-time functions.

Utilities for K^+

In a K-causal spacetime the utilities of the relation K^+ are the time functions.

Given this correspondences Levin's and Peleg's theorems of utility theory lead to the following results

Theorem

A spacetime is K-causal if and only if it admits a time function. In this case, denoting with \mathscr{A} the set of time functions we have that the partial order K^+ can be recovered from the time functions, that is

$$(x,y) \in K^+ \Leftrightarrow \forall t \in \mathscr{A}, \ t(x) \le t(y).$$

Theorem

A chronological spacetime in which $\overline{J^+}$ is transitive admits a semi-time function.

From causality to time

Stable causality (antisymmetry of J_S^+) implies the existence of time.

This is the analog of Szpilrajn *order extension principle*: every partial order can be extended to a total order. (But here continuity comes into play!)

From causality to time

Stable causality (antisymmetry of J_S^+) implies the existence of time.

This is the analog of Szpilrajn *order extension principle*: every partial order can be extended to a total order. (But here continuity comes into play!)

From time to causality

In a stably causal spacetime the time functions on spacetime allow us to recover J_S^+ (whose antisymmetry is equivalent to stable causality).

This is the analog of the result which states that: every partial order is the intersection of the total orders which extend it.

From causality to time

Stable causality (antisymmetry of J_S^+) implies the existence of time.

This is the analog of Szpilrajn *order extension principle*: every partial order can be extended to a total order. (But here continuity comes into play!)

From time to causality

In a stably causal spacetime the time functions on spacetime allow us to recover J_S^+ (whose antisymmetry is equivalent to stable causality).

This is the analog of the result which states that: every partial order is the intersection of the total orders which extend it.

Considerations about time suggest to regard J_S^+ (or K^+) as more fundamental than J^+ .